File: README.md

package info (click to toggle)
pytorch-ignite 0.5.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,712 kB
  • sloc: python: 46,874; sh: 376; makefile: 27
file content (576 lines) | stat: -rw-r--r-- 27,322 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
<div align="center">

<!-- ![Ignite Logo](assets/logo/ignite_logo_mixed.svg) -->

<img src="assets/logo/ignite_logo_mixed.svg" width=512>

<!-- [![image](https://travis-ci.com/pytorch/ignite.svg?branch=master)](https://travis-ci.com/pytorch/ignite) -->

| ![image](https://img.shields.io/badge/-Tests:-black?style=flat-square) [![image](https://github.com/pytorch/ignite/actions/workflows/unit-tests.yml/badge.svg?branch=master)](https://github.com/pytorch/ignite/actions/workflows/unit-tests.yml) [![image](https://github.com/pytorch/ignite/actions/workflows/gpu-tests.yml/badge.svg)](https://github.com/pytorch/ignite/actions/workflows/gpu-tests.yml) [![image](https://codecov.io/gh/pytorch/ignite/branch/master/graph/badge.svg)](https://codecov.io/gh/pytorch/ignite) [![image](https://img.shields.io/badge/dynamic/json.svg?label=docs&url=https%3A%2F%2Fpypi.org%2Fpypi%2Fpytorch-ignite%2Fjson&query=%24.info.version&colorB=brightgreen&prefix=v)](https://pytorch.org/ignite/index.html) |
|:---
| ![image](https://img.shields.io/badge/-Stable%20Releases:-black?style=flat-square) [![image](https://anaconda.org/pytorch/ignite/badges/version.svg)](https://anaconda.org/pytorch/ignite) ・ [![image](https://img.shields.io/badge/dynamic/json.svg?label=PyPI&url=https%3A%2F%2Fpypi.org%2Fpypi%2Fpytorch-ignite%2Fjson&query=%24.info.version&colorB=brightgreen&prefix=v)](https://pypi.org/project/pytorch-ignite/) [![image](https://static.pepy.tech/badge/pytorch-ignite)](https://pepy.tech/project/pytorch-ignite) ・ [![image](https://img.shields.io/badge/docker-hub-blue)](https://hub.docker.com/u/pytorchignite) |
| ![image](https://img.shields.io/badge/-Nightly%20Releases:-black?style=flat-square) [![image](https://anaconda.org/pytorch-nightly/ignite/badges/version.svg)](https://anaconda.org/pytorch-nightly/ignite) [![image](https://img.shields.io/badge/PyPI-pre%20releases-brightgreen)](https://pypi.org/project/pytorch-ignite/#history)|
| ![image](https://img.shields.io/badge/-Community:-black?style=flat-square) [![Twitter](https://img.shields.io/badge/news-twitter-blue)](https://twitter.com/pytorch_ignite) [![discord](https://img.shields.io/badge/chat-discord-blue?logo=discord)](https://discord.gg/djZtm3EmKj) [![numfocus](https://img.shields.io/badge/NumFOCUS-affiliated%20project-green)](https://numfocus.org/sponsored-projects/affiliated-projects) |
| ![image](https://img.shields.io/badge/-Supported_PyTorch/Python_versions:-black?style=flat-square) [![link](https://img.shields.io/badge/-check_here-blue)](https://github.com/pytorch/ignite/actions?query=workflow%3A%22PyTorch+version+tests%22)|

</div>

## TL;DR

Ignite is a high-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.

<div align="center">

<a href="https://colab.research.google.com/github/pytorch/ignite/blob/master/assets/tldr/teaser.ipynb">
 <img alt="PyTorch-Ignite teaser"
      src="assets/tldr/pytorch-ignite-teaser.gif"
      width=532>
</a>

_Click on the image to see complete code_

</div>

### Features

- [Less code than pure PyTorch](https://raw.githubusercontent.com/pytorch/ignite/master/assets/ignite_vs_bare_pytorch.png)
  while ensuring maximum control and simplicity

- Library approach and no program's control inversion - _Use ignite where and when you need_

- Extensible API for metrics, experiment managers, and other components

<!-- ############################################################################################################### -->

# Table of Contents

- [Table of Contents](#table-of-contents)
- [Why Ignite?](#why-ignite)
  - [Simplified training and validation loop](#simplified-training-and-validation-loop)
  - [Power of Events & Handlers](#power-of-events--handlers)
    - [Execute any number of functions whenever you wish](#execute-any-number-of-functions-whenever-you-wish)
    - [Built-in events filtering](#built-in-events-filtering)
    - [Stack events to share some actions](#stack-events-to-share-some-actions)
    - [Custom events to go beyond standard events](#custom-events-to-go-beyond-standard-events)
  - [Out-of-the-box metrics](#out-of-the-box-metrics)
- [Installation](#installation)
  - [Nightly releases](#nightly-releases)
  - [Docker Images](#docker-images)
    - [Using pre-built images](#using-pre-built-images)
- [Getting Started](#getting-started)
- [Documentation](#documentation)
  - [Additional Materials](#additional-materials)
- [Examples](#examples)
  - [Tutorials](#tutorials)
  - [Reproducible Training Examples](#reproducible-training-examples)
- [Communication](#communication)
  - [User feedback](#user-feedback)
- [Contributing](#contributing)
- [Projects using Ignite](#projects-using-ignite)
- [Citing Ignite](#citing-ignite)
- [About the team & Disclaimer](#about-the-team--disclaimer)

<!-- ############################################################################################################### -->

# Why Ignite?

Ignite is a **library** that provides three high-level features:

- Extremely simple engine and event system
- Out-of-the-box metrics to easily evaluate models
- Built-in handlers to compose training pipeline, save artifacts and log parameters and metrics

## Simplified training and validation loop

No more coding `for/while` loops on epochs and iterations. Users instantiate engines and run them.

<details>
<summary>
Example
</summary>

```python
from ignite.engine import Engine, Events, create_supervised_evaluator
from ignite.metrics import Accuracy


# Setup training engine:
def train_step(engine, batch):
    # Users can do whatever they need on a single iteration
    # Eg. forward/backward pass for any number of models, optimizers, etc
    # ...

trainer = Engine(train_step)

# Setup single model evaluation engine
evaluator = create_supervised_evaluator(model, metrics={"accuracy": Accuracy()})

def validation():
    state = evaluator.run(validation_data_loader)
    # print computed metrics
    print(trainer.state.epoch, state.metrics)

# Run model's validation at the end of each epoch
trainer.add_event_handler(Events.EPOCH_COMPLETED, validation)

# Start the training
trainer.run(training_data_loader, max_epochs=100)
```

</details>

## Power of Events & Handlers

The cool thing with handlers is that they offer unparalleled flexibility (compared to, for example, callbacks). Handlers can be any function: e.g. lambda, simple function, class method, etc. Thus, we do not require to inherit from an interface and override its abstract methods which could unnecessarily bulk up your code and its complexity.

### Execute any number of functions whenever you wish

<details>
<summary>
Examples
</summary>

```python
trainer.add_event_handler(Events.STARTED, lambda _: print("Start training"))

# attach handler with args, kwargs
mydata = [1, 2, 3, 4]
logger = ...

def on_training_ended(data):
    print(f"Training is ended. mydata={data}")
    # User can use variables from another scope
    logger.info("Training is ended")


trainer.add_event_handler(Events.COMPLETED, on_training_ended, mydata)
# call any number of functions on a single event
trainer.add_event_handler(Events.COMPLETED, lambda engine: print(engine.state.times))

@trainer.on(Events.ITERATION_COMPLETED)
def log_something(engine):
    print(engine.state.output)
```

</details>

### Built-in events filtering

<details>
<summary>
Examples
</summary>

```python
# run the validation every 5 epochs
@trainer.on(Events.EPOCH_COMPLETED(every=5))
def run_validation():
    # run validation

# change some training variable once on 20th epoch
@trainer.on(Events.EPOCH_STARTED(once=20))
def change_training_variable():
    # ...

# Trigger handler with customly defined frequency
@trainer.on(Events.ITERATION_COMPLETED(event_filter=first_x_iters))
def log_gradients():
    # ...
```

</details>

### Stack events to share some actions

<details>
<summary>
Examples
</summary>

Events can be stacked together to enable multiple calls:

```python
@trainer.on(Events.COMPLETED | Events.EPOCH_COMPLETED(every=10))
def run_validation():
    # ...
```

</details>

### Custom events to go beyond standard events

<details>
<summary>
Examples
</summary>

Custom events related to backward and optimizer step calls:

```python
from ignite.engine import EventEnum


class BackpropEvents(EventEnum):
    BACKWARD_STARTED = 'backward_started'
    BACKWARD_COMPLETED = 'backward_completed'
    OPTIM_STEP_COMPLETED = 'optim_step_completed'

def update(engine, batch):
    # ...
    loss = criterion(y_pred, y)
    engine.fire_event(BackpropEvents.BACKWARD_STARTED)
    loss.backward()
    engine.fire_event(BackpropEvents.BACKWARD_COMPLETED)
    optimizer.step()
    engine.fire_event(BackpropEvents.OPTIM_STEP_COMPLETED)
    # ...

trainer = Engine(update)
trainer.register_events(*BackpropEvents)

@trainer.on(BackpropEvents.BACKWARD_STARTED)
def function_before_backprop(engine):
    # ...
```

- Complete snippet is found [here](https://pytorch.org/ignite/faq.html#creating-custom-events-based-on-forward-backward-pass).
- Another use-case of custom events: [trainer for Truncated Backprop Through Time](https://pytorch.org/ignite/contrib/engines.html#ignite.contrib.engines.create_supervised_tbptt_trainer).

</details>

## Out-of-the-box metrics

- [Metrics](https://pytorch.org/ignite/metrics.html#complete-list-of-metrics) for various tasks:
  Precision, Recall, Accuracy, Confusion Matrix, IoU etc, ~20 [regression metrics](https://pytorch.org/ignite/metrics.html#complete-list-of-metrics).

- Users can also [compose their metrics](https://pytorch.org/ignite/metrics.html#metric-arithmetics) with ease from
  existing ones using arithmetic operations or torch methods.

<details>
<summary>
Example
</summary>

```python
precision = Precision(average=False)
recall = Recall(average=False)
F1_per_class = (precision * recall * 2 / (precision + recall))
F1_mean = F1_per_class.mean()  # torch mean method
F1_mean.attach(engine, "F1")
```

</details>

<!-- ############################################################################################################### -->

# Installation

From [pip](https://pypi.org/project/pytorch-ignite/):

```bash
pip install pytorch-ignite
```

From [conda](https://anaconda.org/pytorch/ignite):

```bash
conda install ignite -c pytorch
```

From source:

```bash
pip install git+https://github.com/pytorch/ignite
```

## Nightly releases

From pip:

```bash
pip install --pre pytorch-ignite
```

From conda (this suggests to install [pytorch nightly release](https://anaconda.org/pytorch-nightly/pytorch) instead of stable
version as dependency):

```bash
conda install ignite -c pytorch-nightly
```

## Docker Images

### Using pre-built images

Pull a pre-built docker image from [our Docker Hub](https://hub.docker.com/u/pytorchignite) and run it with docker v19.03+.

```bash
docker run --gpus all -it -v $PWD:/workspace/project --network=host --shm-size 16G pytorchignite/base:latest /bin/bash
```

<details>

<summary>
List of available pre-built images
</summary>

Base

- `pytorchignite/base:latest`
- `pytorchignite/apex:latest`
- `pytorchignite/hvd-base:latest`
- `pytorchignite/hvd-apex:latest`
- `pytorchignite/msdp-apex:latest`

Vision:

- `pytorchignite/vision:latest`
- `pytorchignite/hvd-vision:latest`
- `pytorchignite/apex-vision:latest`
- `pytorchignite/hvd-apex-vision:latest`
- `pytorchignite/msdp-apex-vision:latest`

NLP:

- `pytorchignite/nlp:latest`
- `pytorchignite/hvd-nlp:latest`
- `pytorchignite/apex-nlp:latest`
- `pytorchignite/hvd-apex-nlp:latest`
- `pytorchignite/msdp-apex-nlp:latest`

</details>

For more details, see [here](docker).

<!-- ############################################################################################################### -->

# Getting Started

Few pointers to get you started:

- [Quick Start Guide: Essentials of getting a project up and running](https://pytorch-ignite.ai/tutorials/beginner/01-getting-started/)
- [Concepts of the library: Engine, Events & Handlers, State, Metrics](https://pytorch-ignite.ai/concepts/)
- Full-featured template examples (coming soon)

<!-- ############################################################################################################### -->

# Documentation

- Stable API documentation and an overview of the library: https://pytorch.org/ignite/
- Development version API documentation: https://pytorch.org/ignite/master/
- [FAQ](https://pytorch.org/ignite/faq.html),
  ["Questions on Github"](https://github.com/pytorch/ignite/issues?q=is%3Aissue+label%3Aquestion+) and
  ["Questions on Discuss.PyTorch"](https://discuss.pytorch.org/c/ignite).
- [Project's Roadmap](https://github.com/pytorch/ignite/wiki/Roadmap)

## Additional Materials

- [Distributed Training Made Easy with PyTorch-Ignite](https://labs.quansight.org/blog/2021/06/distributed-made-easy-with-ignite/)
- [PyTorch Ecosystem Day 2021 Breakout session presentation](https://colab.research.google.com/drive/1qhUgWQ0N2U71IVShLpocyeY4AhlDCPRd)
- [Tutorial blog post about PyTorch-Ignite](https://labs.quansight.org/blog/2020/09/pytorch-ignite/)
- [8 Creators and Core Contributors Talk About Their Model Training Libraries From PyTorch Ecosystem](https://neptune.ai/blog/model-training-libraries-pytorch-ecosystem?utm_source=reddit&utm_medium=post&utm_campaign=blog-model-training-libraries-pytorch-ecosystem)
- Ignite Posters from Pytorch Developer Conferences:
  - [2021](https://drive.google.com/file/d/1YXrkJIepPk_KltSG1ZfWRtA5IRgPFz_U)
  - [2019](https://drive.google.com/open?id=1bqIl-EM6GCCCoSixFZxhIbuF25F2qTZg)
  - [2018](https://drive.google.com/open?id=1_2vzBJ0KeCjGv1srojMHiJRvceSVbVR5)

<!-- ############################################################################################################### -->

# Examples

## Tutorials

- [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/TextCNN.ipynb) [Text Classification using Convolutional Neural
  Networks](https://github.com/pytorch/ignite/blob/master/examples/notebooks/TextCNN.ipynb)
- [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/VAE.ipynb) [Variational Auto
  Encoders](https://github.com/pytorch/ignite/blob/master/examples/notebooks/VAE.ipynb)
- [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/FashionMNIST.ipynb) [Convolutional Neural Networks for Classifying Fashion-MNIST
  Dataset](https://github.com/pytorch/ignite/blob/master/examples/notebooks/FashionMNIST.ipynb)
- [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/CycleGAN_with_nvidia_apex.ipynb) [Training Cycle-GAN on Horses to
  Zebras with Nvidia/Apex](https://github.com/pytorch/ignite/blob/master/examples/notebooks/CycleGAN_with_nvidia_apex.ipynb) - [ logs on W&B](https://app.wandb.ai/vfdev-5/ignite-cyclegan-apex)
- [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/CycleGAN_with_torch_cuda_amp.ipynb) [Another training Cycle-GAN on Horses to
  Zebras with Native Torch CUDA AMP](https://github.com/pytorch/ignite/blob/master/examples/notebooks/CycleGAN_with_torch_cuda_amp.ipynb) - [logs on W&B](https://app.wandb.ai/vfdev-5/ignite-cyclegan-torch-amp)
- [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/EfficientNet_Cifar100_finetuning.ipynb) [Finetuning EfficientNet-B0 on
  CIFAR100](https://github.com/pytorch/ignite/blob/master/examples/notebooks/EfficientNet_Cifar100_finetuning.ipynb)
- [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/Cifar10_Ax_hyperparam_tuning.ipynb) [Hyperparameters tuning with
  Ax](https://github.com/pytorch/ignite/blob/master/examples/notebooks/Cifar10_Ax_hyperparam_tuning.ipynb)
- [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/FastaiLRFinder_MNIST.ipynb) [Basic example of LR finder on
  MNIST](https://github.com/pytorch/ignite/blob/master/examples/notebooks/FastaiLRFinder_MNIST.ipynb)
- [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/Cifar100_bench_amp.ipynb) [Benchmark mixed precision training on Cifar100:
  torch.cuda.amp vs nvidia/apex](https://github.com/pytorch/ignite/blob/master/examples/notebooks/Cifar100_bench_amp.ipynb)
- [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/MNIST_on_TPU.ipynb) [MNIST training on a single
  TPU](https://github.com/pytorch/ignite/blob/master/examples/notebooks/MNIST_on_TPU.ipynb)
- [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1E9zJrptnLJ_PKhmaP5Vhb6DTVRvyrKHx) [CIFAR10 Training on multiple TPUs](https://github.com/pytorch/ignite/tree/master/examples/cifar10)
- [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/HandlersTimeProfiler_MNIST.ipynb) [Basic example of handlers
  time profiling on MNIST training example](https://github.com/pytorch/ignite/blob/master/examples/notebooks/HandlersTimeProfiler_MNIST.ipynb)

## Reproducible Training Examples

Inspired by [torchvision/references](https://github.com/pytorch/vision/tree/master/references),
we provide several reproducible baselines for vision tasks:

- [ImageNet](examples/references/classification/imagenet) - logs on Ignite Trains server coming soon ...
- [Pascal VOC2012](examples/references/segmentation/pascal_voc2012) - logs on Ignite Trains server coming soon ...

Features:

- Distributed training: native or horovod and using [PyTorch native AMP](https://pytorch.org/docs/stable/notes/amp_examples.html)

## Code-Generator application

The easiest way to create your training scripts with PyTorch-Ignite:

- https://code-generator.pytorch-ignite.ai/

<!-- ############################################################################################################### -->

# Communication

- [GitHub issues](https://github.com/pytorch/ignite/issues): questions, bug reports, feature requests, etc.

- [Discuss.PyTorch](https://discuss.pytorch.org/c/ignite), category "Ignite".

- [PyTorch-Ignite Discord Server](https://discord.gg/djZtm3EmKj): to chat with the community

- [GitHub Discussions](https://github.com/pytorch/ignite/discussions): general library-related discussions, ideas, Q&A, etc.

## User feedback

We have created a form for ["user feedback"](https://github.com/pytorch/ignite/issues/new/choose). We
appreciate any type of feedback, and this is how we would like to see our
community:

- If you like the project and want to say thanks, this the right
  place.
- If you do not like something, please, share it with us, and we can
  see how to improve it.

Thank you!

<!-- ############################################################################################################### -->

# Contributing

Please see the [contribution guidelines](https://github.com/pytorch/ignite/blob/master/CONTRIBUTING.md) for more information.

As always, PRs are welcome :)

<!-- ############################################################################################################### -->

# Projects using Ignite

<details>

<summary>
Research papers
</summary>

- [BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning](https://github.com/BlackHC/BatchBALD)
- [A Model to Search for Synthesizable Molecules](https://github.com/john-bradshaw/molecule-chef)
- [Localised Generative Flows](https://github.com/jrmcornish/lgf)
- [Extracting T Cell Function and Differentiation Characteristics from the Biomedical Literature](https://github.com/hammerlab/t-cell-relation-extraction)
- [Variational Information Distillation for Knowledge Transfer](https://github.com/amzn/xfer/tree/master/var_info_distil)
- [XPersona: Evaluating Multilingual Personalized Chatbot](https://github.com/HLTCHKUST/Xpersona)
- [CNN-CASS: CNN for Classification of Coronary Artery Stenosis Score in MPR Images](https://github.com/ucuapps/CoronaryArteryStenosisScoreClassification)
- [Bridging Text and Video: A Universal Multimodal Transformer for Video-Audio Scene-Aware Dialog](https://github.com/ictnlp/DSTC8-AVSD)
- [Adversarial Decomposition of Text Representation](https://github.com/text-machine-lab/adversarial_decomposition)
- [Uncertainty Estimation Using a Single Deep Deterministic Neural Network](https://github.com/y0ast/deterministic-uncertainty-quantification)
- [DeepSphere: a graph-based spherical CNN](https://github.com/deepsphere/deepsphere-pytorch)
- [Norm-in-Norm Loss with Faster Convergence and Better Performance for Image Quality Assessment](https://github.com/lidq92/LinearityIQA)
- [Unified Quality Assessment of In-the-Wild Videos with Mixed Datasets Training](https://github.com/lidq92/MDTVSFA)
- [Deep Signature Transforms](https://github.com/patrick-kidger/Deep-Signature-Transforms)
- [Neural CDEs for Long Time-Series via the Log-ODE Method](https://github.com/jambo6/neuralCDEs-via-logODEs)
- [Volumetric Grasping Network](https://github.com/ethz-asl/vgn)
- [Mood Classification using Listening Data](https://github.com/fdlm/listening-moods)
- [Deterministic Uncertainty Estimation (DUE)](https://github.com/y0ast/DUE)
- [PyTorch-Hebbian: facilitating local learning in a deep learning framework](https://github.com/Joxis/pytorch-hebbian)
- [Stochastic Weight Matrix-Based Regularization Methods for Deep Neural Networks](https://github.com/rpatrik96/lod-wmm-2019)
- [Learning explanations that are hard to vary](https://github.com/gibipara92/learning-explanations-hard-to-vary)
- [The role of disentanglement in generalisation](https://github.com/mmrl/disent-and-gen)
- [A Probabilistic Programming Approach to Protein Structure Superposition](https://github.com/LysSanzMoreta/Theseus-PP)
- [PadChest: A large chest x-ray image dataset with multi-label annotated reports](https://github.com/auriml/Rx-thorax-automatic-captioning)

</details>

<details>

<summary>
Blog articles, tutorials, books
</summary>

- [State-of-the-Art Conversational AI with Transfer Learning](https://github.com/huggingface/transfer-learning-conv-ai)
- [Tutorial on Transfer Learning in NLP held at NAACL 2019](https://github.com/huggingface/naacl_transfer_learning_tutorial)
- [Deep-Reinforcement-Learning-Hands-On-Second-Edition, published by Packt](https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On-Second-Edition)
- [Once Upon a Repository: How to Write Readable, Maintainable Code with PyTorch](https://towardsdatascience.com/once-upon-a-repository-how-to-write-readable-maintainable-code-with-pytorch-951f03f6a829)
- [The Hero Rises: Build Your Own SSD](https://allegro.ai/blog/the-hero-rises-build-your-own-ssd/)
- [Using Optuna to Optimize PyTorch Ignite Hyperparameters](https://medium.com/pytorch/using-optuna-to-optimize-pytorch-ignite-hyperparameters-626ffe6d4783)
- [PyTorch Ignite - Classifying Tiny ImageNet with EfficientNet](https://towardsdatascience.com/pytorch-ignite-classifying-tiny-imagenet-with-efficientnet-e5b1768e5e8f)

</details>

<details>

<summary>
Toolkits
</summary>

- [Project MONAI - AI Toolkit for Healthcare Imaging](https://github.com/Project-MONAI/MONAI)
- [DeepSeismic - Deep Learning for Seismic Imaging and Interpretation](https://github.com/microsoft/seismic-deeplearning)
- [Nussl - a flexible, object-oriented Python audio source separation library](https://github.com/nussl/nussl)
- [PyTorch Adapt - A fully featured and modular domain adaptation library](https://github.com/KevinMusgrave/pytorch-adapt)
- [gnina-torch: PyTorch implementation of GNINA scoring function](https://github.com/RMeli/gnina-torch)

</details>

<details>

<summary>
Others
</summary>

- [Implementation of "Attention is All You Need" paper](https://github.com/akurniawan/pytorch-transformer)
- [Implementation of DropBlock: A regularization method for convolutional networks in PyTorch](https://github.com/miguelvr/dropblock)
- [Kaggle Kuzushiji Recognition: 2nd place solution](https://github.com/lopuhin/kaggle-kuzushiji-2019)
- [Unsupervised Data Augmentation experiments in PyTorch](https://github.com/vfdev-5/UDA-pytorch)
- [Hyperparameters tuning with Optuna](https://github.com/optuna/optuna-examples/blob/main/pytorch/pytorch_ignite_simple.py)
- [Logging with ChainerUI](https://chainerui.readthedocs.io/en/latest/reference/module.html#external-library-support)
- [FixMatch experiments in PyTorch and Ignite (CTA dataaug policy)](https://github.com/vfdev-5/FixMatch-pytorch)
- [Kaggle Birdcall Identification Competition: 1st place solution](https://github.com/ryanwongsa/kaggle-birdsong-recognition)
- [Logging with Aim - An open-source experiment tracker](https://aimstack.readthedocs.io/en/latest/quick_start/integrations.html#integration-with-pytorch-ignite)

</details>

See other projects at ["Used by"](https://github.com/pytorch/ignite/network/dependents?package_id=UGFja2FnZS02NzI5ODEwNA%3D%3D)

If your project implements a paper, represents other use-cases not
covered in our official tutorials, Kaggle competition's code, or just
your code presents interesting results and uses Ignite. We would like to
add your project to this list, so please send a PR with brief
description of the project.

<!-- ############################################################################################################### -->

# Citing Ignite

If you use PyTorch-Ignite in a scientific publication, we would appreciate citations to our project.

```
@misc{pytorch-ignite,
  author = {V. Fomin and J. Anmol and S. Desroziers and J. Kriss and A. Tejani},
  title = {High-level library to help with training neural networks in PyTorch},
  year = {2020},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/pytorch/ignite}},
}
```

<!-- ############################################################################################################### -->

# About the team & Disclaimer

PyTorch-Ignite is a [NumFOCUS Affiliated Project](https://www.numfocus.org/), operated and maintained by volunteers in the PyTorch community in their capacities as individuals
(and not as representatives of their employers). See the ["About us"](https://pytorch-ignite.ai/about/community/#about-us)
page for a list of core contributors. For usage questions and issues, please see the various channels
[here](#communication). For all other questions and inquiries, please send an email
to contact@pytorch-ignite.ai.