File: handlers.rst

package info (click to toggle)
pytorch-ignite 0.5.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,712 kB
  • sloc: python: 46,874; sh: 376; makefile: 27
file content (462 lines) | stat: -rw-r--r-- 15,646 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
ignite.handlers
===============

Complete list of generic handlers
----------------------------------

.. currentmodule:: ignite.handlers

.. autosummary::
    :nosignatures:
    :toctree: generated

    checkpoint.Checkpoint
    DiskSaver
    checkpoint.ModelCheckpoint
    ema_handler.EMAHandler
    early_stopping.EarlyStopping
    lr_finder.FastaiLRFinder
    terminate_on_nan.TerminateOnNan
    TimeLimit
    time_profilers.BasicTimeProfiler
    time_profilers.HandlersTimeProfiler
    timing.Timer
    global_step_from_engine
    stores.EpochOutputStore

.. autosummary::
    :nosignatures:
    :toctree: generated
    :template: classwithcall.rst

    checkpoint.BaseSaveHandler
    param_scheduler.ParamScheduler
    state_param_scheduler.StateParamScheduler


Loggers
--------

.. currentmodule:: ignite.handlers

.. autosummary::
    :nosignatures:
    :toctree: generated
    :recursive:

    base_logger
    clearml_logger
    mlflow_logger
    neptune_logger
    polyaxon_logger
    tensorboard_logger
    tqdm_logger

    visdom_logger
    wandb_logger
    fbresearch_logger

.. seealso::

    Below are a comprehensive list of examples of various loggers.

    * See `tensorboardX mnist example <https://github.com/pytorch/ignite/blob/master/examples/mnist/mnist_with_tensorboard_logger.py>`_
      and `CycleGAN and EfficientNet notebooks <https://github.com/pytorch/ignite/tree/master/examples/notebooks>`_ for detailed usage.

    * See `visdom mnist example <https://github.com/pytorch/ignite/blob/master/examples/mnist/mnist_with_visdom_logger.py>`_ for detailed usage.

    * See `neptune mnist example <https://github.com/pytorch/ignite/blob/master/examples/mnist/mnist_with_neptune_logger.py>`_ for detailed usage.

    * See `tqdm mnist example <https://github.com/pytorch/ignite/blob/master/examples/mnist/mnist_with_tqdm_logger.py>`_ for detailed usage.

    * See `wandb mnist example <https://github.com/pytorch/ignite/blob/master/examples/mnist/mnist_with_wandb_logger.py>`_ for detailed usage.

    * See `clearml mnist example <https://github.com/pytorch/ignite/blob/master/examples/mnist/mnist_with_clearml_logger.py>`_ for detailed usage.


.. _param-scheduler-label:

Parameter scheduler
-------------------

.. currentmodule:: ignite.handlers.param_scheduler

.. autosummary::
    :nosignatures:
    :toctree: generated

    BaseParamScheduler
    ConcatScheduler
    CosineAnnealingScheduler
    CyclicalScheduler
    LRScheduler
    LinearCyclicalScheduler
    ParamGroupScheduler
    ParamScheduler
    PiecewiseLinear
    ReduceLROnPlateauScheduler
    create_lr_scheduler_with_warmup

State Parameter scheduler
-------------------------

.. currentmodule:: ignite.handlers.state_param_scheduler

.. autosummary::
    :nosignatures:
    :toctree: generated

    StateParamScheduler
    LambdaStateScheduler
    PiecewiseLinearStateScheduler
    ExpStateScheduler
    StepStateScheduler
    MultiStepStateScheduler

More on parameter scheduling
----------------------------

In this section there are visual examples of various parameter schedulings that can be achieved.


Example with :class:`~ignite.handlers.param_scheduler.CosineAnnealingScheduler`
```````````````````````````````````````````````````````````````````````````````````````

.. code-block:: python

    import numpy as np
    import matplotlib.pylab as plt
    from ignite.handlers import CosineAnnealingScheduler

    lr_values_1 = np.array(CosineAnnealingScheduler.simulate_values(num_events=75, param_name='lr',
                                                                start_value=1e-1, end_value=2e-2, cycle_size=20))

    lr_values_2 = np.array(CosineAnnealingScheduler.simulate_values(num_events=75, param_name='lr',
                                                                    start_value=1e-1, end_value=2e-2, cycle_size=20, cycle_mult=1.3))

    lr_values_3 = np.array(CosineAnnealingScheduler.simulate_values(num_events=75, param_name='lr',
                                                                    start_value=1e-1, end_value=2e-2,
                                                                    cycle_size=20, start_value_mult=0.7))

    lr_values_4 = np.array(CosineAnnealingScheduler.simulate_values(num_events=75, param_name='lr',
                                                                    start_value=1e-1, end_value=2e-2,
                                                                    cycle_size=20, end_value_mult=0.1))


    plt.figure(figsize=(25, 5))

    plt.subplot(141)
    plt.title("Cosine annealing")
    plt.plot(lr_values_1[:, 0], lr_values_1[:, 1], label="learning rate")
    plt.xlabel("events")
    plt.ylabel("values")
    plt.legend()
    plt.ylim([0.0, 0.12])

    plt.subplot(142)
    plt.title("Cosine annealing with cycle_mult=1.3")
    plt.plot(lr_values_2[:, 0], lr_values_2[:, 1], label="learning rate")
    plt.xlabel("events")
    plt.ylabel("values")
    plt.legend()
    plt.ylim([0.0, 0.12])

    plt.subplot(143)
    plt.title("Cosine annealing with start_value_mult=0.7")
    plt.plot(lr_values_3[:, 0], lr_values_3[:, 1], label="learning rate")
    plt.xlabel("events")
    plt.ylabel("values")
    plt.legend()
    plt.ylim([0.0, 0.12])

    plt.subplot(144)
    plt.title("Cosine annealing with end_value_mult=0.1")
    plt.plot(lr_values_4[:, 0], lr_values_4[:, 1], label="learning rate")
    plt.xlabel("events")
    plt.ylabel("values")
    plt.legend()
    plt.ylim([0.0, 0.12])


.. image:: ./_static/img/schedulers/cosine_annealing_example.png


Example with :class:`ignite.handlers.param_scheduler.LinearCyclicalScheduler`
`````````````````````````````````````````````````````````````````````````````````````

.. code-block:: python

    import numpy as np
    import matplotlib.pylab as plt
    from ignite.handlers import LinearCyclicalScheduler

    lr_values_1 = np.array(LinearCyclicalScheduler.simulate_values(num_events=75, param_name='lr',
                                                                    start_value=1e-1, end_value=2e-2, cycle_size=20))

    lr_values_2 = np.array(LinearCyclicalScheduler.simulate_values(num_events=75, param_name='lr',
                                                                    start_value=1e-1, end_value=2e-2, cycle_size=20, cycle_mult=1.3))

    lr_values_3 = np.array(LinearCyclicalScheduler.simulate_values(num_events=75, param_name='lr',
                                                                    start_value=1e-1, end_value=2e-2,
                                                                    cycle_size=20, start_value_mult=0.7))

    lr_values_4 = np.array(LinearCyclicalScheduler.simulate_values(num_events=75, param_name='lr',
                                                                    start_value=1e-1, end_value=2e-2,
                                                                    cycle_size=20, end_value_mult=0.1))


    plt.figure(figsize=(25, 5))

    plt.subplot(141)
    plt.title("Linear cyclical scheduler")
    plt.plot(lr_values_1[:, 0], lr_values_1[:, 1], label="learning rate")
    plt.xlabel("events")
    plt.ylabel("values")
    plt.legend()
    plt.ylim([0.0, 0.12])

    plt.subplot(142)
    plt.title("Linear cyclical scheduler with cycle_mult=1.3")
    plt.plot(lr_values_2[:, 0], lr_values_2[:, 1], label="learning rate")
    plt.xlabel("events")
    plt.ylabel("values")
    plt.legend()
    plt.ylim([0.0, 0.12])

    plt.subplot(143)
    plt.title("Linear cyclical scheduler with start_value_mult=0.7")
    plt.plot(lr_values_3[:, 0], lr_values_3[:, 1], label="learning rate")
    plt.xlabel("events")
    plt.ylabel("values")
    plt.legend()
    plt.ylim([0.0, 0.12])

    plt.subplot(144)
    plt.title("Linear cyclical scheduler with end_value_mult=0.1")
    plt.plot(lr_values_4[:, 0], lr_values_4[:, 1], label="learning rate")
    plt.xlabel("events")
    plt.ylabel("values")
    plt.legend()
    plt.ylim([0.0, 0.12])


.. image:: ./_static/img/schedulers/linear_cyclical_example.png


Example with :class:`ignite.handlers.param_scheduler.ConcatScheduler`
`````````````````````````````````````````````````````````````````````````````

.. code-block:: python

    import numpy as np
    import matplotlib.pylab as plt
    from ignite.handlers import LinearCyclicalScheduler, CosineAnnealingScheduler, ConcatScheduler

    import torch

    t1 = torch.zeros([1], requires_grad=True)
    optimizer = torch.optim.SGD([t1], lr=0.1)


    scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.1, end_value=0.5, cycle_size=30)
    scheduler_2 = CosineAnnealingScheduler(optimizer, "lr", start_value=0.5, end_value=0.01, cycle_size=50)
    durations = [15, ]

    lr_values_1 = np.array(ConcatScheduler.simulate_values(num_events=100, schedulers=[scheduler_1, scheduler_2], durations=durations))


    t1 = torch.zeros([1], requires_grad=True)
    optimizer = torch.optim.SGD([t1], lr=0.1)

    scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.1, end_value=0.5, cycle_size=30)
    scheduler_2 = CosineAnnealingScheduler(optimizer, "momentum", start_value=0.5, end_value=0.01, cycle_size=50)
    durations = [15, ]

    lr_values_2 = np.array(ConcatScheduler.simulate_values(num_events=100, schedulers=[scheduler_1, scheduler_2], durations=durations,
                                                            param_names=["lr", "momentum"]))

    plt.figure(figsize=(25, 5))

    plt.subplot(131)
    plt.title("Concat scheduler of linear + cosine annealing")
    plt.plot(lr_values_1[:, 0], lr_values_1[:, 1], label="learning rate")
    plt.xlabel("events")
    plt.ylabel("values")
    plt.legend()

    plt.subplot(132)
    plt.title("Concat scheduler of linear LR scheduler\n and cosine annealing on momentum")
    plt.plot(lr_values_2[:, 0], lr_values_2[:, 1], label="learning rate")
    plt.xlabel("events")
    plt.ylabel("values")
    plt.legend()

    plt.subplot(133)
    plt.title("Concat scheduler of linear LR scheduler\n and cosine annealing on momentum")
    plt.plot(lr_values_2[:, 0], lr_values_2[:, 2], label="momentum")
    plt.xlabel("events")
    plt.ylabel("values")
    plt.legend()

.. image:: ./_static/img/schedulers/concat_example.png

Piecewise linear scheduler
^^^^^^^^^^^^^^^^^^^^^^^^^^

.. code-block:: python

    import numpy as np
    import matplotlib.pylab as plt
    from ignite.handlers import LinearCyclicalScheduler, ConcatScheduler

    scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.0, end_value=0.6, cycle_size=50)
    scheduler_2 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.6, end_value=0.0, cycle_size=150)
    durations = [25, ]

    lr_values = np.array(ConcatScheduler.simulate_values(num_events=100, schedulers=[scheduler_1, scheduler_2], durations=durations))


    plt.title("Piecewise linear scheduler")
    plt.plot(lr_values[:, 0], lr_values[:, 1], label="learning rate")
    plt.xlabel("events")
    plt.ylabel("values")
    plt.legend()

.. image:: ./_static/img/schedulers/piecewise_linear.png


Example with :class:`ignite.handlers.param_scheduler.LRScheduler`
`````````````````````````````````````````````````````````````````````````

.. code-block:: python

    import numpy as np
    import matplotlib.pylab as plt
    from ignite.handlers import LRScheduler

    import torch
    from torch.optim.lr_scheduler import ExponentialLR, StepLR, CosineAnnealingLR

    tensor = torch.zeros([1], requires_grad=True)
    optimizer = torch.optim.SGD([tensor], lr=0.1)

    lr_scheduler_1 = StepLR(optimizer=optimizer, step_size=10, gamma=0.77)
    lr_scheduler_2 = ExponentialLR(optimizer=optimizer, gamma=0.98)
    lr_scheduler_3 = CosineAnnealingLR(optimizer=optimizer, T_max=10, eta_min=0.01)

    lr_values_1 = np.array(LRScheduler.simulate_values(num_events=100, lr_scheduler=lr_scheduler_1))
    lr_values_2 = np.array(LRScheduler.simulate_values(num_events=100, lr_scheduler=lr_scheduler_2))
    lr_values_3 = np.array(LRScheduler.simulate_values(num_events=100, lr_scheduler=lr_scheduler_3))


    plt.figure(figsize=(25, 5))

    plt.subplot(131)
    plt.title("Torch LR scheduler wrapping StepLR")
    plt.plot(lr_values_1[:, 0], lr_values_1[:, 1], label="learning rate")
    plt.xlabel("events")
    plt.ylabel("values")
    plt.legend()

    plt.subplot(132)
    plt.title("Torch LR scheduler wrapping ExponentialLR")
    plt.plot(lr_values_2[:, 0], lr_values_2[:, 1], label="learning rate")
    plt.xlabel("events")
    plt.ylabel("values")
    plt.legend()

    plt.subplot(133)
    plt.title("Torch LR scheduler wrapping CosineAnnealingLR")
    plt.plot(lr_values_3[:, 0], lr_values_3[:, 1], label="learning rate")
    plt.xlabel("events")
    plt.ylabel("values")
    plt.legend()


.. image:: ./_static/img/schedulers/lr_scheduler.png


Concatenate with torch schedulers
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. code-block:: python

    import numpy as np
    import matplotlib.pylab as plt
    from ignite.handlers import LRScheduler, ConcatScheduler

    import torch
    from torch.optim.lr_scheduler import ExponentialLR, StepLR

    t1 = torch.zeros([1], requires_grad=True)
    optimizer = torch.optim.SGD([t1], lr=0.1)

    scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.001, end_value=0.1, cycle_size=30)
    lr_scheduler = ExponentialLR(optimizer=optimizer, gamma=0.7)
    scheduler_2 = LRScheduler(lr_scheduler=lr_scheduler)
    durations = [15, ]
    lr_values_1 = np.array(ConcatScheduler.simulate_values(num_events=30, schedulers=[scheduler_1, scheduler_2], durations=durations))


    scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=0.001, end_value=0.1, cycle_size=30)
    lr_scheduler = StepLR(optimizer=optimizer, step_size=10, gamma=0.7)
    scheduler_2 = LRScheduler(lr_scheduler=lr_scheduler)
    durations = [15, ]
    lr_values_2 = np.array(ConcatScheduler.simulate_values(num_events=75, schedulers=[scheduler_1, scheduler_2], durations=durations))

    plt.figure(figsize=(15, 5))
    plt.subplot(121)
    plt.title("Concat scheduler of linear + ExponentialLR")
    plt.plot(lr_values_1[:, 0], lr_values_1[:, 1], label="learning rate")
    plt.xlabel("events")
    plt.ylabel("values")
    plt.legend()

    plt.subplot(122)
    plt.title("Concat scheduler of linear + StepLR")
    plt.plot(lr_values_2[:, 0], lr_values_2[:, 1], label="learning rate")
    plt.xlabel("events")
    plt.ylabel("values")
    plt.legend()


.. image:: ./_static/img/schedulers/concat_linear_exp_step_lr.png


Example with :class:`ignite.handlers.param_scheduler.ReduceLROnPlateauScheduler`
`````````````````````````````````````````````````````````````````````````````````````

.. code-block:: python

    import matplotlib.pyplot as plt
    import numpy as np
    from ignite.handlers import ReduceLROnPlateauScheduler

    metric_values = [0.7, 0.78, 0.81, 0.82, 0.82, 0.83, 0.80, 0.81, 0.84, 0.78]
    num_events = 10
    init_lr = 0.1

    lr_values = np.array(ReduceLROnPlateauScheduler.simulate_values(
        num_events, metric_values, init_lr,
        factor=0.5, patience=1, mode='max', threshold=0.01, threshold_mode='abs'
        )
    )

    plt.figure(figsize=(15, 5))
    plt.suptitle("ReduceLROnPlateauScheduler")
    plt.subplot(121)
    plt.plot(lr_values[:, 1], label="learning rate")
    plt.xticks(lr_values[:, 0])
    plt.xlabel("events")
    plt.ylabel("values")
    plt.legend()

    plt.subplot(122)
    plt.plot(metric_values, label="metric")
    plt.xticks(lr_values[:, 0])
    plt.xlabel("events")
    plt.ylabel("values")
    plt.legend()


.. image:: ./_static/img/schedulers/reduce_lr_on_plateau_example.png