1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
|
import os
from pathlib import Path
from torchvision import datasets, models
from torchvision.transforms import Compose, Normalize, Pad, RandomCrop, RandomHorizontalFlip, ToTensor
train_transform = Compose(
[
Pad(4),
RandomCrop(32, fill=128),
RandomHorizontalFlip(),
ToTensor(),
Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
]
)
test_transform = Compose([ToTensor(), Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))])
def get_train_test_datasets(path):
path = Path(path)
if not path.exists():
path.mkdir(parents=True)
download = True
else:
download = True if len(os.listdir(path)) < 1 else False
train_ds = datasets.CIFAR10(root=path, train=True, download=download, transform=train_transform)
test_ds = datasets.CIFAR10(root=path, train=False, download=False, transform=test_transform)
return train_ds, test_ds
def get_model(name):
if name in models.__dict__:
fn = models.__dict__[name]
else:
raise RuntimeError(f"Unknown model name {name}")
return fn(num_classes=10)
|