1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
from argparse import ArgumentParser
from pathlib import Path
import torch
import torch.nn.functional as F
from torch import nn
from torch.optim import SGD
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import Compose, Normalize, ToTensor
from tqdm import tqdm
from ignite.engine import create_supervised_evaluator, create_supervised_trainer, Events
from ignite.handlers import Checkpoint, DiskSaver
from ignite.metrics import Accuracy, Loss, RunningAverage
from ignite.utils import manual_seed
try:
from tensorboardX import SummaryWriter
except ImportError:
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
raise ModuleNotFoundError(
"This module requires either tensorboardX or torch >= 1.2.0. "
"You may install tensorboardX with command: \n pip install tensorboardX \n"
"or upgrade PyTorch using your package manager of choice (pip or conda)."
)
# Basic model's definition
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=-1)
def get_data_loaders(train_batch_size, val_batch_size):
"""Method to setup data loaders: train_loader and val_loader"""
data_transform = Compose([ToTensor(), Normalize((0.1307,), (0.3081,))])
train_loader = DataLoader(
MNIST(download=True, root=".", transform=data_transform, train=True),
batch_size=train_batch_size,
shuffle=True,
num_workers=4,
)
val_loader = DataLoader(
MNIST(download=False, root=".", transform=data_transform, train=False),
batch_size=val_batch_size,
shuffle=False,
num_workers=4,
)
return train_loader, val_loader
def log_model_weights(engine, model=None, fp=None, **kwargs):
"""Helper method to log norms of model weights: print and dump into a file"""
assert model and fp
output = {"total": 0.0}
max_counter = 5
for name, p in model.named_parameters():
name = name.replace(".", "/")
n = torch.norm(p)
if max_counter > 0:
output[name] = n
output["total"] += n
max_counter -= 1
output_items = " - ".join([f"{m}:{v:.4f}" for m, v in output.items()])
msg = f"{engine.state.epoch} | {engine.state.iteration}: {output_items}"
with open(fp, "a") as h:
h.write(msg)
h.write("\n")
def log_model_grads(engine, model=None, fp=None, **kwargs):
"""Helper method to log norms of model gradients: print and dump into a file"""
assert model and fp
output = {"grads/total": 0.0}
max_counter = 5
for name, p in model.named_parameters():
if p.grad is None:
continue
name = name.replace(".", "/")
n = torch.norm(p.grad)
if max_counter > 0:
output[f"grads/{name}"] = n
output["grads/total"] += n
max_counter -= 1
output_items = " - ".join([f"{m}:{v:.4f}" for m, v in output.items()])
msg = f"{engine.state.epoch} | {engine.state.iteration}: {output_items}"
with open(fp, "a") as h:
h.write(msg)
h.write("\n")
def log_data_stats(engine, fp=None, **kwargs):
"""Helper method to log mean/std of input batch of images and median of batch of targets."""
assert fp
x, y = engine.state.batch
output = {
"batch xmean": x.mean().item(),
"batch xstd": x.std().item(),
"batch ymedian": y.median().item(),
}
output_items = " - ".join([f"{m}:{v:.4f}" for m, v in output.items()])
msg = f"{engine.state.epoch} | {engine.state.iteration}: {output_items}"
with open(fp, "a") as h:
h.write(msg)
h.write("\n")
def run(
train_batch_size,
val_batch_size,
epochs,
lr,
momentum,
log_interval,
log_dir,
checkpoint_every,
resume_from,
crash_iteration=-1,
deterministic=False,
):
# Setup seed to have same model's initialization:
manual_seed(75)
train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size)
model = Net()
writer = SummaryWriter(log_dir=log_dir)
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
model.to(device) # Move model before creating optimizer
criterion = nn.NLLLoss()
optimizer = SGD(model.parameters(), lr=lr, momentum=momentum)
lr_scheduler = StepLR(optimizer, step_size=1, gamma=0.5)
# Setup trainer and evaluator
if deterministic:
tqdm.write("Setup deterministic trainer")
trainer = create_supervised_trainer(model, optimizer, criterion, device=device, deterministic=deterministic)
running_loss = RunningAverage(output_transform=lambda x: x)
running_loss.attach(trainer, "rloss")
metrics = {"accuracy": Accuracy(), "nll": Loss(criterion)}
evaluator = create_supervised_evaluator(model, metrics, device)
# Apply learning rate scheduling
@trainer.on(Events.EPOCH_COMPLETED)
def lr_step(engine):
lr_scheduler.step()
pbar = tqdm(initial=0, leave=False, total=len(train_loader), desc=f"Epoch {0} - loss: {0:.4f} - lr: {lr:.4f}")
@trainer.on(Events.ITERATION_COMPLETED(every=log_interval))
def log_training_loss(engine):
lr = optimizer.param_groups[0]["lr"]
rloss = engine.state.metrics["rloss"]
pbar.desc = f"Epoch {engine.state.epoch} - loss: {rloss:.4f} - lr: {lr:.4f}"
pbar.update(log_interval)
writer.add_scalar("training/running_loss", rloss, engine.state.iteration)
writer.add_scalar("lr", lr, engine.state.iteration)
if crash_iteration > 0:
@trainer.on(Events.ITERATION_COMPLETED(once=crash_iteration))
def _(engine):
raise Exception(f"STOP at {engine.state.iteration}")
if resume_from is not None:
@trainer.on(Events.STARTED)
def _(engine):
pbar.n = engine.state.iteration % engine.state.epoch_length
@trainer.on(Events.EPOCH_COMPLETED)
def log_training_results(engine):
pbar.refresh()
evaluator.run(train_loader)
metrics = evaluator.state.metrics
avg_accuracy = metrics["accuracy"]
avg_nll = metrics["nll"]
tqdm.write(
f"Training Results - Epoch: {engine.state.epoch} Avg accuracy: {avg_accuracy:.2f} Avg loss: {avg_nll:.2f}"
)
writer.add_scalar("training/avg_loss", avg_nll, engine.state.epoch)
writer.add_scalar("training/avg_accuracy", avg_accuracy, engine.state.epoch)
# Compute and log validation metrics
@trainer.on(Events.EPOCH_COMPLETED)
def log_validation_results(engine):
evaluator.run(val_loader)
metrics = evaluator.state.metrics
avg_accuracy = metrics["accuracy"]
avg_nll = metrics["nll"]
tqdm.write(
f"Validation Results - Epoch: {engine.state.epoch} Avg accuracy: {avg_accuracy:.2f} Avg loss: {avg_nll:.2f}"
)
pbar.n = pbar.last_print_n = 0
writer.add_scalar("valdation/avg_loss", avg_nll, engine.state.epoch)
writer.add_scalar("valdation/avg_accuracy", avg_accuracy, engine.state.epoch)
# Setup object to checkpoint
objects_to_checkpoint = {
"trainer": trainer,
"model": model,
"optimizer": optimizer,
"lr_scheduler": lr_scheduler,
"train_running_loss": running_loss,
"metrics": metrics,
}
training_checkpoint = Checkpoint(
to_save=objects_to_checkpoint,
save_handler=DiskSaver(log_dir, require_empty=False),
n_saved=None,
global_step_transform=lambda *_: trainer.state.epoch,
)
trainer.add_event_handler(Events.EPOCH_COMPLETED(every=checkpoint_every), training_checkpoint)
# Setup logger to print and dump into file: model weights, model grads and data stats
# - first 3 iterations
# - 4 iterations after checkpointing
# This helps to compare resumed training with checkpointed training
def log_event_filter(e, event):
if event in [1, 2, 3]:
return True
elif 0 <= (event % (checkpoint_every * e.state.epoch_length)) < 5:
return True
return False
fp = Path(log_dir) / ("run.log" if resume_from is None else "resume_run.log")
fp = fp.as_posix()
for h in [log_data_stats, log_model_weights, log_model_grads]:
trainer.add_event_handler(Events.ITERATION_COMPLETED(event_filter=log_event_filter), h, model=model, fp=fp)
if resume_from is not None:
tqdm.write(f"Resume from the checkpoint: {resume_from}")
checkpoint = torch.load(resume_from)
Checkpoint.load_objects(to_load=objects_to_checkpoint, checkpoint=checkpoint)
try:
# Synchronize random states
manual_seed(15)
trainer.run(train_loader, max_epochs=epochs)
except Exception as e:
import traceback
print(traceback.format_exc())
pbar.close()
writer.close()
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--batch_size", type=int, default=64, help="input batch size for training (default: 64)")
parser.add_argument(
"--val_batch_size", type=int, default=1000, help="input batch size for validation (default: 1000)"
)
parser.add_argument("--epochs", type=int, default=10, help="number of epochs to train (default: 10)")
parser.add_argument("--lr", type=float, default=0.01, help="learning rate (default: 0.01)")
parser.add_argument("--momentum", type=float, default=0.5, help="SGD momentum (default: 0.5)")
parser.add_argument(
"--log_interval", type=int, default=10, help="how many batches to wait before logging training status"
)
parser.add_argument(
"--log_dir", type=str, default="/tmp/mnist_save_resume", help="log directory for Tensorboard log output"
)
parser.add_argument("--checkpoint_every", type=int, default=1, help="Checkpoint training every X epochs")
parser.add_argument(
"--resume_from", type=str, default=None, help="Path to the checkpoint .pt file to resume training from"
)
parser.add_argument("--crash_iteration", type=int, default=-1, help="Iteration at which to raise an exception")
parser.add_argument(
"--deterministic", action="store_true", help="Deterministic training with dataflow synchronization"
)
args = parser.parse_args()
run(
args.batch_size,
args.val_batch_size,
args.epochs,
args.lr,
args.momentum,
args.log_interval,
args.log_dir,
args.checkpoint_every,
args.resume_from,
args.crash_iteration,
args.deterministic,
)
|