File: mnist_save_resume_engine.py

package info (click to toggle)
pytorch-ignite 0.5.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,712 kB
  • sloc: python: 46,874; sh: 376; makefile: 27
file content (315 lines) | stat: -rw-r--r-- 11,264 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
from argparse import ArgumentParser
from pathlib import Path

import torch
import torch.nn.functional as F
from torch import nn
from torch.optim import SGD
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import Compose, Normalize, ToTensor
from tqdm import tqdm

from ignite.engine import create_supervised_evaluator, create_supervised_trainer, Events
from ignite.handlers import Checkpoint, DiskSaver
from ignite.metrics import Accuracy, Loss, RunningAverage
from ignite.utils import manual_seed

try:
    from tensorboardX import SummaryWriter
except ImportError:
    try:
        from torch.utils.tensorboard import SummaryWriter
    except ImportError:
        raise ModuleNotFoundError(
            "This module requires either tensorboardX or torch >= 1.2.0. "
            "You may install tensorboardX with command: \n pip install tensorboardX \n"
            "or upgrade PyTorch using your package manager of choice (pip or conda)."
        )


# Basic model's definition
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=-1)


def get_data_loaders(train_batch_size, val_batch_size):
    """Method to setup data loaders: train_loader and val_loader"""
    data_transform = Compose([ToTensor(), Normalize((0.1307,), (0.3081,))])

    train_loader = DataLoader(
        MNIST(download=True, root=".", transform=data_transform, train=True),
        batch_size=train_batch_size,
        shuffle=True,
        num_workers=4,
    )

    val_loader = DataLoader(
        MNIST(download=False, root=".", transform=data_transform, train=False),
        batch_size=val_batch_size,
        shuffle=False,
        num_workers=4,
    )
    return train_loader, val_loader


def log_model_weights(engine, model=None, fp=None, **kwargs):
    """Helper method to log norms of model weights: print and dump into a file"""
    assert model and fp
    output = {"total": 0.0}
    max_counter = 5
    for name, p in model.named_parameters():
        name = name.replace(".", "/")
        n = torch.norm(p)
        if max_counter > 0:
            output[name] = n
        output["total"] += n
        max_counter -= 1
    output_items = " - ".join([f"{m}:{v:.4f}" for m, v in output.items()])
    msg = f"{engine.state.epoch} | {engine.state.iteration}: {output_items}"

    with open(fp, "a") as h:
        h.write(msg)
        h.write("\n")


def log_model_grads(engine, model=None, fp=None, **kwargs):
    """Helper method to log norms of model gradients: print and dump into a file"""
    assert model and fp
    output = {"grads/total": 0.0}
    max_counter = 5
    for name, p in model.named_parameters():
        if p.grad is None:
            continue
        name = name.replace(".", "/")
        n = torch.norm(p.grad)
        if max_counter > 0:
            output[f"grads/{name}"] = n
        output["grads/total"] += n
        max_counter -= 1

    output_items = " - ".join([f"{m}:{v:.4f}" for m, v in output.items()])
    msg = f"{engine.state.epoch} | {engine.state.iteration}: {output_items}"

    with open(fp, "a") as h:
        h.write(msg)
        h.write("\n")


def log_data_stats(engine, fp=None, **kwargs):
    """Helper method to log mean/std of input batch of images and median of batch of targets."""
    assert fp
    x, y = engine.state.batch
    output = {
        "batch xmean": x.mean().item(),
        "batch xstd": x.std().item(),
        "batch ymedian": y.median().item(),
    }
    output_items = " - ".join([f"{m}:{v:.4f}" for m, v in output.items()])
    msg = f"{engine.state.epoch} | {engine.state.iteration}: {output_items}"

    with open(fp, "a") as h:
        h.write(msg)
        h.write("\n")


def run(
    train_batch_size,
    val_batch_size,
    epochs,
    lr,
    momentum,
    log_interval,
    log_dir,
    checkpoint_every,
    resume_from,
    crash_iteration=-1,
    deterministic=False,
):
    # Setup seed to have same model's initialization:
    manual_seed(75)

    train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size)
    model = Net()
    writer = SummaryWriter(log_dir=log_dir)
    device = "cpu"

    if torch.cuda.is_available():
        device = "cuda"

    model.to(device)  # Move model before creating optimizer
    criterion = nn.NLLLoss()
    optimizer = SGD(model.parameters(), lr=lr, momentum=momentum)
    lr_scheduler = StepLR(optimizer, step_size=1, gamma=0.5)

    # Setup trainer and evaluator
    if deterministic:
        tqdm.write("Setup deterministic trainer")
    trainer = create_supervised_trainer(model, optimizer, criterion, device=device, deterministic=deterministic)
    running_loss = RunningAverage(output_transform=lambda x: x)
    running_loss.attach(trainer, "rloss")

    metrics = {"accuracy": Accuracy(), "nll": Loss(criterion)}
    evaluator = create_supervised_evaluator(model, metrics, device)

    # Apply learning rate scheduling
    @trainer.on(Events.EPOCH_COMPLETED)
    def lr_step(engine):
        lr_scheduler.step()

    pbar = tqdm(initial=0, leave=False, total=len(train_loader), desc=f"Epoch {0} - loss: {0:.4f} - lr: {lr:.4f}")

    @trainer.on(Events.ITERATION_COMPLETED(every=log_interval))
    def log_training_loss(engine):
        lr = optimizer.param_groups[0]["lr"]
        rloss = engine.state.metrics["rloss"]
        pbar.desc = f"Epoch {engine.state.epoch} - loss: {rloss:.4f} - lr: {lr:.4f}"
        pbar.update(log_interval)
        writer.add_scalar("training/running_loss", rloss, engine.state.iteration)
        writer.add_scalar("lr", lr, engine.state.iteration)

    if crash_iteration > 0:

        @trainer.on(Events.ITERATION_COMPLETED(once=crash_iteration))
        def _(engine):
            raise Exception(f"STOP at {engine.state.iteration}")

    if resume_from is not None:

        @trainer.on(Events.STARTED)
        def _(engine):
            pbar.n = engine.state.iteration % engine.state.epoch_length

    @trainer.on(Events.EPOCH_COMPLETED)
    def log_training_results(engine):
        pbar.refresh()
        evaluator.run(train_loader)
        metrics = evaluator.state.metrics
        avg_accuracy = metrics["accuracy"]
        avg_nll = metrics["nll"]
        tqdm.write(
            f"Training Results - Epoch: {engine.state.epoch} Avg accuracy: {avg_accuracy:.2f} Avg loss: {avg_nll:.2f}"
        )
        writer.add_scalar("training/avg_loss", avg_nll, engine.state.epoch)
        writer.add_scalar("training/avg_accuracy", avg_accuracy, engine.state.epoch)

    # Compute and log validation metrics
    @trainer.on(Events.EPOCH_COMPLETED)
    def log_validation_results(engine):
        evaluator.run(val_loader)
        metrics = evaluator.state.metrics
        avg_accuracy = metrics["accuracy"]
        avg_nll = metrics["nll"]
        tqdm.write(
            f"Validation Results - Epoch: {engine.state.epoch} Avg accuracy: {avg_accuracy:.2f} Avg loss: {avg_nll:.2f}"
        )
        pbar.n = pbar.last_print_n = 0
        writer.add_scalar("valdation/avg_loss", avg_nll, engine.state.epoch)
        writer.add_scalar("valdation/avg_accuracy", avg_accuracy, engine.state.epoch)

    # Setup object to checkpoint
    objects_to_checkpoint = {
        "trainer": trainer,
        "model": model,
        "optimizer": optimizer,
        "lr_scheduler": lr_scheduler,
        "train_running_loss": running_loss,
        "metrics": metrics,
    }
    training_checkpoint = Checkpoint(
        to_save=objects_to_checkpoint,
        save_handler=DiskSaver(log_dir, require_empty=False),
        n_saved=None,
        global_step_transform=lambda *_: trainer.state.epoch,
    )
    trainer.add_event_handler(Events.EPOCH_COMPLETED(every=checkpoint_every), training_checkpoint)

    # Setup logger to print and dump into file: model weights, model grads and data stats
    # - first 3 iterations
    # - 4 iterations after checkpointing
    # This helps to compare resumed training with checkpointed training
    def log_event_filter(e, event):
        if event in [1, 2, 3]:
            return True
        elif 0 <= (event % (checkpoint_every * e.state.epoch_length)) < 5:
            return True
        return False

    fp = Path(log_dir) / ("run.log" if resume_from is None else "resume_run.log")
    fp = fp.as_posix()
    for h in [log_data_stats, log_model_weights, log_model_grads]:
        trainer.add_event_handler(Events.ITERATION_COMPLETED(event_filter=log_event_filter), h, model=model, fp=fp)

    if resume_from is not None:
        tqdm.write(f"Resume from the checkpoint: {resume_from}")
        checkpoint = torch.load(resume_from)
        Checkpoint.load_objects(to_load=objects_to_checkpoint, checkpoint=checkpoint)

    try:
        # Synchronize random states
        manual_seed(15)
        trainer.run(train_loader, max_epochs=epochs)
    except Exception as e:
        import traceback

        print(traceback.format_exc())

    pbar.close()
    writer.close()


if __name__ == "__main__":
    parser = ArgumentParser()
    parser.add_argument("--batch_size", type=int, default=64, help="input batch size for training (default: 64)")
    parser.add_argument(
        "--val_batch_size", type=int, default=1000, help="input batch size for validation (default: 1000)"
    )
    parser.add_argument("--epochs", type=int, default=10, help="number of epochs to train (default: 10)")
    parser.add_argument("--lr", type=float, default=0.01, help="learning rate (default: 0.01)")
    parser.add_argument("--momentum", type=float, default=0.5, help="SGD momentum (default: 0.5)")
    parser.add_argument(
        "--log_interval", type=int, default=10, help="how many batches to wait before logging training status"
    )
    parser.add_argument(
        "--log_dir", type=str, default="/tmp/mnist_save_resume", help="log directory for Tensorboard log output"
    )
    parser.add_argument("--checkpoint_every", type=int, default=1, help="Checkpoint training every X epochs")
    parser.add_argument(
        "--resume_from", type=str, default=None, help="Path to the checkpoint .pt file to resume training from"
    )
    parser.add_argument("--crash_iteration", type=int, default=-1, help="Iteration at which to raise an exception")
    parser.add_argument(
        "--deterministic", action="store_true", help="Deterministic training with dataflow synchronization"
    )

    args = parser.parse_args()

    run(
        args.batch_size,
        args.val_batch_size,
        args.epochs,
        args.lr,
        args.momentum,
        args.log_interval,
        args.log_dir,
        args.checkpoint_every,
        args.resume_from,
        args.crash_iteration,
        args.deterministic,
    )