1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
|
import os
from functools import partial
from pathlib import Path
import fire
import torch
try:
from torch.cuda.amp import autocast, GradScaler
except ImportError:
raise RuntimeError("Please, use recent PyTorch version, e.g. >=1.6.0")
import dataflow as data
import utils
import vis
from py_config_runner import ConfigObject, get_params, InferenceConfigSchema, TrainvalConfigSchema
import ignite.distributed as idist
from ignite.contrib.engines import common
from ignite.engine import Engine, Events
from ignite.handlers import Checkpoint, Timer
from ignite.metrics import Accuracy, Frequency, TopKCategoricalAccuracy
from ignite.utils import manual_seed, setup_logger
def training(local_rank, config, logger, with_clearml):
rank = idist.get_rank()
manual_seed(config.seed + local_rank)
train_loader = config.train_loader
val_loader = config.val_loader
train_eval_loader = config.train_eval_loader
model, optimizer, criterion = utils.initialize(config)
# Setup trainer for this specific task
trainer = create_trainer(model, optimizer, criterion, train_loader.sampler, config, logger, with_clearml)
# Setup evaluators
accuracy = Accuracy()
val_metrics = {
"Accuracy": accuracy,
"Top-5 Accuracy": TopKCategoricalAccuracy(k=5),
"Error": (1.0 - accuracy) * 100,
}
if ("val_metrics" in config) and isinstance(config.val_metrics, dict):
val_metrics.update(config.val_metrics)
evaluator = create_evaluator(model, val_metrics, config, with_clearml, tag="val")
train_evaluator = create_evaluator(model, val_metrics, config, with_clearml, tag="train")
val_interval = config.get("val_interval", 1)
# Run validation on every val_interval epoch, in the end of the training
# and in the begining if config.start_by_validation is True
event = Events.EPOCH_COMPLETED(every=val_interval)
if config.num_epochs % val_interval != 0:
event |= Events.COMPLETED
if config.get("start_by_validation", False):
event |= Events.STARTED
@trainer.on(event)
def run_validation():
epoch = trainer.state.epoch
state = train_evaluator.run(train_eval_loader)
utils.log_metrics(logger, epoch, state.times["COMPLETED"], "Train", state.metrics)
state = evaluator.run(val_loader)
utils.log_metrics(logger, epoch, state.times["COMPLETED"], "Test", state.metrics)
score_metric_name = "Accuracy"
if "es_patience" in config:
common.add_early_stopping_by_val_score(config.es_patience, evaluator, trainer, metric_name=score_metric_name)
# Store 2 best models by validation accuracy:
common.gen_save_best_models_by_val_score(
save_handler=utils.get_save_handler(config.output_path.as_posix(), with_clearml),
evaluator=evaluator,
models=model,
metric_name=score_metric_name,
n_saved=2,
trainer=trainer,
tag="val",
)
# Setup Tensorboard logger
if rank == 0:
tb_logger = common.setup_tb_logging(
config.output_path.as_posix(),
trainer,
optimizer,
evaluators={"training": train_evaluator, "validation": evaluator},
)
# Log validation predictions as images
# We define a custom event filter to log less frequently the images (to reduce storage size)
# - we plot images with masks of the middle validation batch
# - once every 3 validations and
# - at the end of the training
def custom_event_filter(_, val_iteration):
c1 = val_iteration == 1
c2 = trainer.state.epoch % (config.get("val_interval", 1) * 3) == 0
c2 |= trainer.state.epoch == config.num_epochs
return c1 and c2
# Image denormalization function to plot predictions with images
mean = config.get("mean", (0.485, 0.456, 0.406))
std = config.get("std", (0.229, 0.224, 0.225))
img_denormalize = partial(data.denormalize, mean=mean, std=std)
tb_logger.attach(
evaluator,
log_handler=vis.predictions_gt_images_handler(
img_denormalize_fn=img_denormalize, n_images=12, another_engine=trainer, prefix_tag="validation"
),
event_name=Events.ITERATION_COMPLETED(event_filter=custom_event_filter),
)
tb_logger.attach(
train_evaluator,
log_handler=vis.predictions_gt_images_handler(
img_denormalize_fn=img_denormalize, n_images=12, another_engine=trainer, prefix_tag="training"
),
event_name=Events.ITERATION_COMPLETED(event_filter=custom_event_filter),
)
trainer.run(train_loader, max_epochs=config.num_epochs)
if idist.get_rank() == 0:
tb_logger.close()
def create_trainer(model, optimizer, criterion, train_sampler, config, logger, with_clearml):
device = config.device
prepare_batch = data.prepare_batch
# Setup trainer
accumulation_steps = config.get("accumulation_steps", 1)
model_output_transform = config.get("model_output_transform", lambda x: x)
with_amp = config.get("with_amp", True)
scaler = GradScaler(enabled=with_amp)
def training_step(engine, batch):
model.train()
x, y = prepare_batch(batch, device=device, non_blocking=True)
with autocast(enabled=with_amp):
y_pred = model(x)
y_pred = model_output_transform(y_pred)
loss = criterion(y_pred, y) / accumulation_steps
output = {"supervised batch loss": loss.item(), "num_samples": len(x)}
scaler.scale(loss).backward()
if engine.state.iteration % accumulation_steps == 0:
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
return output
trainer = Engine(training_step)
trainer.logger = logger
throughput_metric = Frequency(output_transform=lambda x: x["num_samples"])
throughput_metric.attach(trainer, name="Throughput")
timer = Timer(average=True)
timer.attach(
trainer,
resume=Events.ITERATION_STARTED,
pause=Events.ITERATION_COMPLETED,
step=Events.ITERATION_COMPLETED,
)
@trainer.on(Events.ITERATION_COMPLETED(every=20))
def log_progress():
metrics = dict(trainer.state.metrics)
epoch_length = trainer.state.epoch_length
metrics["ETA (seconds)"] = int((epoch_length - (trainer.state.iteration % epoch_length)) * timer.value())
metrics_str = ", ".join([f"{k}: {v}" for k, v in metrics.items()])
metrics_format = (
f"[{trainer.state.epoch}/{trainer.state.max_epochs}] "
+ f"Iter={trainer.state.iteration % epoch_length}/{epoch_length}: "
+ f"{metrics_str}"
)
trainer.logger.info(metrics_format)
output_names = [
"supervised batch loss",
]
lr_scheduler = config.lr_scheduler
to_save = {
"model": model,
"optimizer": optimizer,
"lr_scheduler": lr_scheduler,
"trainer": trainer,
"amp": scaler,
}
save_every_iters = config.get("save_every_iters", 1000)
common.setup_common_training_handlers(
trainer,
train_sampler,
to_save=to_save,
save_every_iters=save_every_iters,
save_handler=utils.get_save_handler(config.output_path.as_posix(), with_clearml),
lr_scheduler=lr_scheduler,
output_names=output_names,
# with_pbars=not with_clearml,
with_pbars=False,
log_every_iters=1,
)
resume_from = config.get("resume_from", None)
if resume_from is not None:
checkpoint_fp = Path(resume_from)
assert checkpoint_fp.exists(), f"Checkpoint '{checkpoint_fp.as_posix()}' is not found"
logger.info(f"Resume from a checkpoint: {checkpoint_fp.as_posix()}")
checkpoint = torch.load(checkpoint_fp.as_posix(), map_location="cpu")
Checkpoint.load_objects(to_load=to_save, checkpoint=checkpoint)
return trainer
def create_evaluator(model, metrics, config, with_clearml, tag="val"):
model_output_transform = config.get("model_output_transform", lambda x: x)
with_amp = config.get("with_amp", True)
prepare_batch = data.prepare_batch
@torch.no_grad()
def evaluate_step(engine, batch):
model.eval()
with autocast(enabled=with_amp):
x, y = prepare_batch(batch, device=config.device, non_blocking=True)
y_pred = model(x)
y_pred = model_output_transform(y_pred)
return y_pred, y
evaluator = Engine(evaluate_step)
for name, metric in metrics.items():
metric.attach(evaluator, name)
if idist.get_rank() == 0 and (not with_clearml):
common.ProgressBar(desc=f"Evaluation ({tag})", persist=False).attach(evaluator)
return evaluator
def setup_experiment_tracking(config, with_clearml, task_type="training"):
from datetime import datetime
assert task_type in ("training", "testing"), task_type
output_path = ""
if idist.get_rank() == 0:
if with_clearml:
from clearml import Task
schema = TrainvalConfigSchema if task_type == "training" else InferenceConfigSchema
task = Task.init("ImageNet Training", config.config_filepath.stem, task_type=task_type)
task.connect_configuration(config.config_filepath.as_posix())
task.upload_artifact(config.script_filepath.name, config.script_filepath.as_posix())
task.upload_artifact(config.config_filepath.name, config.config_filepath.as_posix())
task.connect(get_params(config, schema))
output_path = Path(os.environ.get("CLEARML_OUTPUT_PATH", "/tmp"))
output_path = output_path / "clearml" / datetime.now().strftime("%Y%m%d-%H%M%S")
else:
import shutil
output_path = Path(os.environ.get("OUTPUT_PATH", "/tmp/output-imagenet"))
output_path = output_path / task_type / config.config_filepath.stem
output_path = output_path / datetime.now().strftime("%Y%m%d-%H%M%S")
output_path.mkdir(parents=True, exist_ok=True)
shutil.copyfile(config.script_filepath.as_posix(), output_path / config.script_filepath.name)
shutil.copyfile(config.config_filepath.as_posix(), output_path / config.config_filepath.name)
output_path = output_path.as_posix()
return Path(idist.broadcast(output_path, src=0))
def run_training(config_filepath, backend="nccl", with_clearml=True):
"""Main entry to run training experiment
Args:
config_filepath (str): training configuration .py file
backend (str): distributed backend: nccl, gloo or None to run without distributed config
with_clearml (bool): if True, uses ClearML as experiment tracking system
"""
assert torch.cuda.is_available(), torch.cuda.is_available()
assert torch.backends.cudnn.enabled
torch.backends.cudnn.benchmark = True
config_filepath = Path(config_filepath)
assert config_filepath.exists(), f"File '{config_filepath.as_posix()}' is not found"
with idist.Parallel(backend=backend) as parallel:
logger = setup_logger(name="ImageNet Training", distributed_rank=idist.get_rank())
config = ConfigObject(config_filepath)
TrainvalConfigSchema.validate(config)
config.script_filepath = Path(__file__)
output_path = setup_experiment_tracking(config, with_clearml=with_clearml)
config.output_path = output_path
utils.log_basic_info(logger, get_params(config, TrainvalConfigSchema))
try:
parallel.run(training, config, logger=logger, with_clearml=with_clearml)
except KeyboardInterrupt:
logger.info("Catched KeyboardInterrupt -> exit")
except Exception as e: # noqa
logger.exception("")
raise e
def get_model_weights(config, logger, with_clearml):
path = ""
if with_clearml:
from clearml import Model
if idist.get_rank() > 0:
idist.barrier()
else:
model_id = config.weights_path
logger.info(f"Loading trained model: {model_id}")
model = Model(model_id)
assert model is not None, f"{model_id}"
path = model.get_local_copy()
idist.barrier()
path = idist.broadcast(path, src=0)
else:
path = config.weights_path
logger.info(f"Loading {path}")
assert Path(path).exists(), f"{path} is not found"
return torch.load(path)
def evaluation(local_rank, config, logger, with_clearml):
rank = idist.get_rank()
device = idist.device()
manual_seed(config.seed + local_rank)
data_loader = config.data_loader
model = config.model.to(device)
# Load weights:
state_dict = get_model_weights(config, logger, with_clearml)
model.load_state_dict(state_dict)
# Adapt model to dist config
model = idist.auto_model(model)
# Setup evaluators
val_metrics = {
"Accuracy": Accuracy(),
"Top-5 Accuracy": TopKCategoricalAccuracy(k=5),
}
if ("val_metrics" in config) and isinstance(config.val_metrics, dict):
val_metrics.update(config.val_metrics)
evaluator = create_evaluator(model, val_metrics, config, with_clearml, tag="val")
# Setup Tensorboard logger
if rank == 0:
tb_logger = common.TensorboardLogger(log_dir=config.output_path.as_posix())
tb_logger.attach_output_handler(evaluator, event_name=Events.COMPLETED, tag="validation", metric_names="all")
state = evaluator.run(data_loader)
utils.log_metrics(logger, 0, state.times["COMPLETED"], "Validation", state.metrics)
if idist.get_rank() == 0:
tb_logger.close()
def run_evaluation(config_filepath, backend="nccl", with_clearml=True):
"""Main entry to run model's evaluation:
- compute validation metrics
Args:
config_filepath (str): evaluation configuration .py file
backend (str): distributed backend: nccl, gloo, horovod or None to run without distributed config
with_clearml (bool): if True, uses ClearML as experiment tracking system
"""
assert torch.cuda.is_available(), torch.cuda.is_available()
assert torch.backends.cudnn.enabled
torch.backends.cudnn.benchmark = True
config_filepath = Path(config_filepath)
assert config_filepath.exists(), f"File '{config_filepath.as_posix()}' is not found"
with idist.Parallel(backend=backend) as parallel:
logger = setup_logger(name="ImageNet Evaluation", distributed_rank=idist.get_rank())
config = ConfigObject(config_filepath)
InferenceConfigSchema.validate(config)
config.script_filepath = Path(__file__)
output_path = setup_experiment_tracking(config, with_clearml=with_clearml, task_type="testing")
config.output_path = output_path
utils.log_basic_info(logger, get_params(config, InferenceConfigSchema))
try:
parallel.run(evaluation, config, logger=logger, with_clearml=with_clearml)
except KeyboardInterrupt:
logger.info("Catched KeyboardInterrupt -> exit")
except Exception as e: # noqa
logger.exception("")
raise e
if __name__ == "__main__":
fire.Fire({"training": run_training, "eval": run_evaluation})
|