1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
import cv2
import numpy as np
import torch
from PIL import Image
from torch.utils.data import Dataset
from torch.utils.data.dataset import Subset
from torchvision.datasets.sbd import SBDataset
from torchvision.datasets.voc import VOCSegmentation
import ignite.distributed as idist
from ignite.utils import convert_tensor
class TransformedDataset(Dataset):
def __init__(self, ds, transform_fn):
assert isinstance(ds, Dataset)
assert callable(transform_fn)
self.ds = ds
self.transform_fn = transform_fn
def __len__(self):
return len(self.ds)
def __getitem__(self, index):
dp = self.ds[index]
return self.transform_fn(**dp)
class VOCSegmentationOpencv(VOCSegmentation):
target_names = [
"background",
"aeroplane",
"bicycle",
"bird",
"boat",
"bottle",
"bus",
"car",
"cat",
"chair",
"cow",
"diningtable",
"dog",
"horse",
"motorbike",
"person",
"plant",
"sheep",
"sofa",
"train",
"tv/monitor",
]
def __init__(self, *args, return_meta=False, **kwargs):
super(VOCSegmentationOpencv, self).__init__(*args, **kwargs)
self.return_meta = return_meta
def __getitem__(self, index):
img = cv2.imread(self.images[index])
assert img is not None, f"Image at '{self.images[index]}' has a problem"
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
mask = np.asarray(Image.open(self.masks[index]))
if self.return_meta:
return {
"image": img,
"mask": mask,
"meta": {"index": index, "image_path": self.images[index], "mask_path": self.masks[index]},
}
return {"image": img, "mask": mask}
class SBDatasetOpencv(SBDataset):
def __init__(self, *args, return_meta=False, **kwargs):
super(SBDatasetOpencv, self).__init__(*args, **kwargs)
assert self.mode == "segmentation", "SBDatasetOpencv should be in segmentation mode only"
self.return_meta = return_meta
def _get_segmentation_target(self, filepath):
mat = self._loadmat(filepath)
return mat["GTcls"][0]["Segmentation"][0]
def __getitem__(self, index):
img = cv2.imread(self.images[index])
assert img is not None, f"Image at '{self.images[index]}' has a problem"
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
mask = self._get_target(self.masks[index])
if self.return_meta:
return {
"image": img,
"mask": mask,
"meta": {"index": index, "image_path": self.images[index], "mask_path": self.masks[index]},
}
return {"image": img, "mask": mask}
def get_train_dataset(root_path, return_meta=False):
return VOCSegmentationOpencv(
root=root_path, year="2012", image_set="train", download=False, return_meta=return_meta
)
def get_val_dataset(root_path, return_meta=False):
return VOCSegmentationOpencv(root=root_path, year="2012", image_set="val", download=False, return_meta=return_meta)
def get_train_noval_sbdataset(root_path, return_meta=False):
return SBDatasetOpencv(root_path, image_set="train_noval", mode="segmentation", return_meta=return_meta)
def get_dataloader(dataset, sampler=None, shuffle=False, limit_num_samples=None, **kwargs):
if limit_num_samples is not None:
g = torch.Generator().manual_seed(limit_num_samples)
indices = torch.randperm(len(dataset), generator=g)[:limit_num_samples]
dataset = Subset(dataset, indices)
return idist.auto_dataloader(dataset, sampler=sampler, shuffle=(sampler is None) and shuffle, **kwargs)
def get_train_val_loaders(
root_path,
train_transforms,
val_transforms,
batch_size=16,
num_workers=8,
train_sampler=None,
val_batch_size=None,
sbd_path=None,
limit_train_num_samples=None,
limit_val_num_samples=None,
):
train_ds = get_train_dataset(root_path)
val_ds = get_val_dataset(root_path)
if sbd_path is not None:
sbd_train_ds = get_train_noval_sbdataset(sbd_path)
train_ds = train_ds + sbd_train_ds
if len(val_ds) < len(train_ds):
g = torch.Generator().manual_seed(len(train_ds))
train_eval_indices = torch.randperm(len(train_ds), generator=g)[: len(val_ds)]
train_eval_ds = Subset(train_ds, train_eval_indices)
else:
train_eval_ds = train_ds
train_ds = TransformedDataset(train_ds, transform_fn=train_transforms)
val_ds = TransformedDataset(val_ds, transform_fn=val_transforms)
train_eval_ds = TransformedDataset(train_eval_ds, transform_fn=val_transforms)
val_batch_size = batch_size * 4 if val_batch_size is None else val_batch_size
train_loader = get_dataloader(
train_ds,
shuffle=True,
sampler=train_sampler,
batch_size=batch_size,
num_workers=num_workers,
drop_last=True,
limit_num_samples=limit_train_num_samples,
)
val_loader = get_dataloader(
val_ds,
shuffle=False,
batch_size=val_batch_size,
num_workers=num_workers,
drop_last=False,
limit_num_samples=limit_val_num_samples,
)
train_eval_loader = get_dataloader(
train_eval_ds,
shuffle=False,
batch_size=val_batch_size,
num_workers=num_workers,
drop_last=False,
limit_num_samples=limit_val_num_samples,
)
return train_loader, val_loader, train_eval_loader
def get_inference_dataloader(
root_path, mode, transforms, batch_size=16, num_workers=8, pin_memory=True, limit_num_samples=None
):
assert mode in ("train", "test"), "Mode should be 'train' or 'test'"
get_dataset_fn = get_train_dataset if mode == "train" else get_val_dataset
dataset = get_dataset_fn(root_path, return_meta=True)
dataset = TransformedDataset(dataset, transform_fn=transforms)
return get_dataloader(
dataset,
limit_num_samples=limit_num_samples,
shuffle=False,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=pin_memory,
drop_last=False,
)
def ignore_mask_boundaries(**kwargs):
assert "mask" in kwargs, "Input should contain 'mask'"
mask = kwargs["mask"]
mask[mask == 255] = 0
kwargs["mask"] = mask
return kwargs
def denormalize(t, mean, std, max_pixel_value=255):
assert isinstance(t, torch.Tensor), f"{type(t)}"
assert t.ndim == 3
d = t.device
mean = torch.tensor(mean, device=d).unsqueeze(-1).unsqueeze(-1)
std = torch.tensor(std, device=d).unsqueeze(-1).unsqueeze(-1)
tensor = std * t + mean
tensor *= max_pixel_value
return tensor
def prepare_image_mask(batch, device, non_blocking):
x, y = batch["image"], batch["mask"]
x = convert_tensor(x, device, non_blocking=non_blocking)
y = convert_tensor(y, device, non_blocking=non_blocking).long()
return x, y
|