1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
import argparse
from collections import deque
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical
from ignite.engine import Engine, Events
try:
import gymnasium as gym
except ImportError:
raise ModuleNotFoundError("Please install opengym: pip install gymnasium")
eps = np.finfo(np.float32).eps.item()
class Policy(nn.Module):
def __init__(self):
super(Policy, self).__init__()
self.affine1 = nn.Linear(4, 128)
self.dropout = nn.Dropout(p=0.6)
self.affine2 = nn.Linear(128, 2)
self.saved_log_probs = []
self.rewards = []
def forward(self, x):
x = self.affine1(x)
x = self.dropout(x)
x = F.relu(x)
action_scores = self.affine2(x)
return F.softmax(action_scores, dim=1)
def select_action(policy, observation):
state = torch.from_numpy(observation).float().unsqueeze(0)
probs = policy(state)
m = Categorical(probs)
action = m.sample()
policy.saved_log_probs.append(m.log_prob(action))
return action.item()
def finish_episode(policy, optimizer, gamma):
R = 0
policy_loss = []
returns = deque()
for r in policy.rewards[::-1]:
R = r + gamma * R
returns.appendleft(R)
returns = torch.tensor(returns)
returns = (returns - returns.mean()) / (returns.std() + eps)
for log_prob, R in zip(policy.saved_log_probs, returns):
policy_loss.append(-log_prob * R)
optimizer.zero_grad()
policy_loss = torch.cat(policy_loss).sum()
policy_loss.backward()
optimizer.step()
del policy.rewards[:]
del policy.saved_log_probs[:]
EPISODE_STARTED = Events.EPOCH_STARTED
EPISODE_COMPLETED = Events.EPOCH_COMPLETED
def main(env, args):
policy = Policy()
optimizer = optim.Adam(policy.parameters(), lr=1e-2)
timesteps = range(10000)
def run_single_timestep(engine, timestep):
observation = engine.state.observation
action = select_action(policy, observation)
engine.state.observation, reward, done, _, _ = env.step(action)
if args.render:
env.render()
policy.rewards.append(reward)
engine.state.ep_reward += reward
if done:
engine.terminate_epoch()
engine.state.timestep = timestep
trainer = Engine(run_single_timestep)
trainer.state.running_reward = 10
@trainer.on(EPISODE_STARTED)
def reset_environment_state():
torch.manual_seed(args.seed + trainer.state.epoch)
trainer.state.observation, _ = env.reset(seed=args.seed + trainer.state.epoch)
trainer.state.ep_reward = 0
@trainer.on(EPISODE_COMPLETED)
def update_model():
trainer.state.running_reward = 0.05 * trainer.state.ep_reward + (1 - 0.05) * trainer.state.running_reward
finish_episode(policy, optimizer, args.gamma)
@trainer.on(EPISODE_COMPLETED(every=args.log_interval))
def log_episode():
i_episode = trainer.state.epoch
print(
f"Episode {i_episode}\tLast reward: {trainer.state.ep_reward:.2f}"
f"\tAverage length: {trainer.state.running_reward:.2f}"
)
@trainer.on(EPISODE_COMPLETED)
def should_finish_training():
running_reward = trainer.state.running_reward
if running_reward > env.spec.reward_threshold:
print(
f"Solved! Running reward is now {running_reward} and "
f"the last episode runs to {trainer.state.timestep} time steps!"
)
trainer.should_terminate = True
trainer.run(timesteps, max_epochs=args.max_episodes)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="PyTorch REINFORCE example")
parser.add_argument("--gamma", type=float, default=0.99, metavar="G", help="discount factor (default: 0.99)")
parser.add_argument("--seed", type=int, default=543, metavar="N", help="random seed (default: 543)")
parser.add_argument("--render", action="store_true", help="render the environment")
parser.add_argument(
"--log-interval", type=int, default=10, metavar="N", help="interval between training status logs (default: 10)"
)
parser.add_argument(
"--max-episodes",
type=int,
default=1000000,
metavar="N",
help="Number of episodes for the training (default: 1000000)",
)
args = parser.parse_args()
env = gym.make("CartPole-v1")
main(env, args)
|