File: reinforce.py

package info (click to toggle)
pytorch-ignite 0.5.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,712 kB
  • sloc: python: 46,874; sh: 376; makefile: 27
file content (143 lines) | stat: -rw-r--r-- 4,551 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import argparse
from collections import deque

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical

from ignite.engine import Engine, Events

try:
    import gymnasium as gym
except ImportError:
    raise ModuleNotFoundError("Please install opengym: pip install gymnasium")


eps = np.finfo(np.float32).eps.item()


class Policy(nn.Module):
    def __init__(self):
        super(Policy, self).__init__()
        self.affine1 = nn.Linear(4, 128)
        self.dropout = nn.Dropout(p=0.6)
        self.affine2 = nn.Linear(128, 2)

        self.saved_log_probs = []
        self.rewards = []

    def forward(self, x):
        x = self.affine1(x)
        x = self.dropout(x)
        x = F.relu(x)
        action_scores = self.affine2(x)
        return F.softmax(action_scores, dim=1)


def select_action(policy, observation):
    state = torch.from_numpy(observation).float().unsqueeze(0)
    probs = policy(state)
    m = Categorical(probs)
    action = m.sample()
    policy.saved_log_probs.append(m.log_prob(action))
    return action.item()


def finish_episode(policy, optimizer, gamma):
    R = 0
    policy_loss = []
    returns = deque()
    for r in policy.rewards[::-1]:
        R = r + gamma * R
        returns.appendleft(R)
    returns = torch.tensor(returns)
    returns = (returns - returns.mean()) / (returns.std() + eps)
    for log_prob, R in zip(policy.saved_log_probs, returns):
        policy_loss.append(-log_prob * R)
    optimizer.zero_grad()
    policy_loss = torch.cat(policy_loss).sum()
    policy_loss.backward()
    optimizer.step()
    del policy.rewards[:]
    del policy.saved_log_probs[:]


EPISODE_STARTED = Events.EPOCH_STARTED
EPISODE_COMPLETED = Events.EPOCH_COMPLETED


def main(env, args):
    policy = Policy()
    optimizer = optim.Adam(policy.parameters(), lr=1e-2)
    timesteps = range(10000)

    def run_single_timestep(engine, timestep):
        observation = engine.state.observation
        action = select_action(policy, observation)
        engine.state.observation, reward, done, _, _ = env.step(action)
        if args.render:
            env.render()
        policy.rewards.append(reward)
        engine.state.ep_reward += reward
        if done:
            engine.terminate_epoch()
            engine.state.timestep = timestep

    trainer = Engine(run_single_timestep)
    trainer.state.running_reward = 10

    @trainer.on(EPISODE_STARTED)
    def reset_environment_state():
        torch.manual_seed(args.seed + trainer.state.epoch)
        trainer.state.observation, _ = env.reset(seed=args.seed + trainer.state.epoch)
        trainer.state.ep_reward = 0

    @trainer.on(EPISODE_COMPLETED)
    def update_model():
        trainer.state.running_reward = 0.05 * trainer.state.ep_reward + (1 - 0.05) * trainer.state.running_reward
        finish_episode(policy, optimizer, args.gamma)

    @trainer.on(EPISODE_COMPLETED(every=args.log_interval))
    def log_episode():
        i_episode = trainer.state.epoch
        print(
            f"Episode {i_episode}\tLast reward: {trainer.state.ep_reward:.2f}"
            f"\tAverage length: {trainer.state.running_reward:.2f}"
        )

    @trainer.on(EPISODE_COMPLETED)
    def should_finish_training():
        running_reward = trainer.state.running_reward
        if running_reward > env.spec.reward_threshold:
            print(
                f"Solved! Running reward is now {running_reward} and "
                f"the last episode runs to {trainer.state.timestep} time steps!"
            )
            trainer.should_terminate = True

    trainer.run(timesteps, max_epochs=args.max_episodes)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="PyTorch REINFORCE example")
    parser.add_argument("--gamma", type=float, default=0.99, metavar="G", help="discount factor (default: 0.99)")
    parser.add_argument("--seed", type=int, default=543, metavar="N", help="random seed (default: 543)")
    parser.add_argument("--render", action="store_true", help="render the environment")
    parser.add_argument(
        "--log-interval", type=int, default=10, metavar="N", help="interval between training status logs (default: 10)"
    )
    parser.add_argument(
        "--max-episodes",
        type=int,
        default=1000000,
        metavar="N",
        help="Number of episodes for the training (default: 1000000)",
    )
    args = parser.parse_args()

    env = gym.make("CartPole-v1")

    main(env, args)