File: README.md

package info (click to toggle)
pytorch-ignite 0.5.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,712 kB
  • sloc: python: 46,874; sh: 376; makefile: 27
file content (115 lines) | stat: -rw-r--r-- 3,498 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# Transformers Example with Ignite

In this example, we show how to use _Ignite_ to finetune a transformer model:

- on 1 or more GPUs or TPUs
- compute training/validation metrics
- log learning rate, metrics etc
- save the best model weights

Configurations:

- [x] single GPU
- [x] multi GPUs on a single node
- [x] TPUs on Colab

## Requirements:

- pytorch-ignite: `pip install pytorch-ignite`
- [transformers](https://github.com/huggingface/transformers): `pip install transformers`
- [datasets](https://github.com/huggingface/datasets): `pip install datasets`
- [tqdm](https://github.com/tqdm/tqdm/): `pip install tqdm`
- [tensorboardx](https://github.com/lanpa/tensorboard-pytorch): `pip install tensorboardX`
- [python-fire](https://github.com/google/python-fire): `pip install fire`
- Optional: [clearml](https://github.com/allegroai/clearml): `pip install clearml`

Alternatively, install the all requirements using `pip install -r requirements.txt`.

## Usage:

Run the example on a single GPU:

```bash
python main.py run
```
If needed, please, adjust the batch size to your GPU device with `--batch_size` argument.

The default model is `bert-base-uncased` incase you need to change that use the `--model` argument, for details on which models can be used refer [here](https://huggingface.co/transformers/v3.0.2/model_doc/auto.html#automodelforsequenceclassification)

Example: 
```bash
#Using DistilBERT which has 40% less parameters than bert-base-uncased
python main.py run --model="distilbert-base-uncased"
```


For details on accepted arguments:

```bash
python main.py run -- --help
```


### Distributed training

#### Single node, multiple GPUs

Let's start training on a single node with 2 gpus:

```bash
# using torch.distributed.launch
python -u -m torch.distributed.launch --nproc_per_node=2 --use_env main.py run --backend="nccl"
```

or

```bash
# using function spawn inside the code
python -u main.py run --backend="nccl" --nproc_per_node=2
```

##### Using [Horovod](https://horovod.readthedocs.io/en/latest/index.html) as distributed backend

Please, make sure to have Horovod installed before running.

Let's start training on a single node with 2 gpus:

```bash
# horovodrun
horovodrun -np=2 python -u main.py run --backend="horovod"
```

or

```bash
# using function spawn inside the code
python -u main.py run --backend="horovod" --nproc_per_node=2
```

#### Colab or Kaggle kernels, on 8 TPUs

```python
# setup TPU environment
import os
assert os.environ['COLAB_TPU_ADDR'], 'Make sure to select TPU from Edit > Notebook settings > Hardware accelerator'
```
```bash
VERSION = "nightly"
!curl -q https://raw.githubusercontent.com/pytorch/xla/master/contrib/scripts/env-setup.py -o pytorch-xla-env-setup.py
!python pytorch-xla-env-setup.py --version $VERSION > /dev/null
```

```python
from main import run
run(backend="xla-tpu", nproc_per_node=8)
```

## ClearML fileserver

If `ClearML` server is used (i.e. `--with_clearml` argument), the configuration to upload artifact must be done by
modifying the `ClearML` configuration file `~/clearml.conf` generated by `clearml-init`. According to the
[documentation](https://allegro.ai/clearml/docs/docs/examples/reporting/artifacts.html), the `output_uri` argument can be
configured in `sdk.development.default_output_uri` to fileserver uri. If server is self-hosted, `ClearML` fileserver uri is
`http://localhost:8081`.

For more details, see https://allegro.ai/clearml/docs/docs/examples/reporting/artifacts.html