File: common.py

package info (click to toggle)
pytorch-ignite 0.5.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,712 kB
  • sloc: python: 46,874; sh: 376; makefile: 27
file content (708 lines) | stat: -rw-r--r-- 28,430 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
import numbers
import warnings
from functools import partial
from typing import Any, Callable, cast, Dict, Iterable, Mapping, Optional, Sequence, Union

import torch
import torch.nn as nn
from torch.optim.optimizer import Optimizer
from torch.utils.data.distributed import DistributedSampler

# https://github.com/pytorch/ignite/issues/2773
try:
    from torch.optim.lr_scheduler import LRScheduler as PyTorchLRScheduler
except ImportError:
    from torch.optim.lr_scheduler import _LRScheduler as PyTorchLRScheduler

import ignite.distributed as idist
from ignite.engine import Engine, Events
from ignite.handlers import (
    Checkpoint,
    ClearMLLogger,
    DiskSaver,
    EarlyStopping,
    global_step_from_engine,
    MLflowLogger,
    NeptuneLogger,
    PolyaxonLogger,
    ProgressBar,
    TensorboardLogger,
    TerminateOnNan,
    VisdomLogger,
    WandBLogger,
)
from ignite.handlers.base_logger import BaseLogger
from ignite.handlers.checkpoint import BaseSaveHandler
from ignite.handlers.param_scheduler import ParamScheduler
from ignite.metrics import GpuInfo, RunningAverage
from ignite.metrics.metric import RunningBatchWise
from ignite.utils import deprecated


def setup_common_training_handlers(
    trainer: Engine,
    train_sampler: Optional[DistributedSampler] = None,
    to_save: Optional[Mapping] = None,
    save_every_iters: int = 1000,
    output_path: Optional[str] = None,
    lr_scheduler: Optional[Union[ParamScheduler, PyTorchLRScheduler]] = None,
    with_gpu_stats: bool = False,
    output_names: Optional[Iterable[str]] = None,
    with_pbars: bool = True,
    with_pbar_on_iters: bool = True,
    log_every_iters: int = 100,
    stop_on_nan: bool = True,
    clear_cuda_cache: bool = True,
    save_handler: Optional[Union[Callable, BaseSaveHandler]] = None,
    **kwargs: Any,
) -> None:
    """Helper method to setup trainer with common handlers (it also supports distributed configuration):

        - :class:`~ignite.handlers.terminate_on_nan.TerminateOnNan`
        - handler to setup learning rate scheduling
        - :class:`~ignite.handlers.checkpoint.ModelCheckpoint`
        - :class:`~ignite.metrics.RunningAverage` on `update_function` output
        - Two progress bars on epochs and optionally on iterations

    Args:
        trainer: trainer engine. Output of trainer's `update_function` should be a dictionary
            or sequence or a single tensor.
        train_sampler: Optional distributed sampler used to call
            `set_epoch` method on epoch started event.
        to_save: dictionary with objects to save in the checkpoint. This argument is passed to
            :class:`~ignite.handlers.checkpoint.Checkpoint` instance.
        save_every_iters: saving interval. By default, `to_save` objects are stored
            each 1000 iterations.
        output_path: output path to indicate where `to_save` objects are stored. Argument is mutually
            exclusive with ``save_handler``.
        lr_scheduler: learning rate scheduler
            as native torch LRScheduler or ignite's parameter scheduler.
        with_gpu_stats: if True, :class:`~ignite.metrics.GpuInfo` is attached to the
            trainer. This requires `pynvml` package to be installed.
        output_names: list of names associated with `update_function` output dictionary.
        with_pbars: if True, two progress bars on epochs and optionally on iterations are attached.
            Default, True.
        with_pbar_on_iters: if True, a progress bar on iterations is attached to the trainer.
            Default, True.
        log_every_iters: logging interval for :class:`~ignite.metrics.GpuInfo` and for
            epoch-wise progress bar. Default, 100.
        stop_on_nan: if True, :class:`~ignite.handlers.terminate_on_nan.TerminateOnNan` handler is added to the trainer.
            Default, True.
        clear_cuda_cache: if True, `torch.cuda.empty_cache()` is called every end of epoch.
            Default, True.
        save_handler: Method or callable
            class to use to store ``to_save``. See :class:`~ignite.handlers.checkpoint.Checkpoint` for more details.
            Argument is mutually exclusive with ``output_path``.
        kwargs: optional keyword args to be passed to construct :class:`~ignite.handlers.checkpoint.Checkpoint`.
    """

    if idist.get_world_size() > 1:
        _setup_common_distrib_training_handlers(
            trainer,
            train_sampler=train_sampler,
            to_save=to_save,
            save_every_iters=save_every_iters,
            output_path=output_path,
            lr_scheduler=lr_scheduler,
            with_gpu_stats=with_gpu_stats,
            output_names=output_names,
            with_pbars=with_pbars,
            with_pbar_on_iters=with_pbar_on_iters,
            log_every_iters=log_every_iters,
            stop_on_nan=stop_on_nan,
            clear_cuda_cache=clear_cuda_cache,
            save_handler=save_handler,
            **kwargs,
        )
    else:
        if train_sampler is not None and isinstance(train_sampler, DistributedSampler):
            warnings.warn(
                "Argument train_sampler is a distributed sampler,"
                " but either there is no distributed setting or world size is < 2. "
                "Train sampler argument will be ignored",
                UserWarning,
            )
        _setup_common_training_handlers(
            trainer,
            to_save=to_save,
            save_every_iters=save_every_iters,
            output_path=output_path,
            lr_scheduler=lr_scheduler,
            with_gpu_stats=with_gpu_stats,
            output_names=output_names,
            with_pbars=with_pbars,
            with_pbar_on_iters=with_pbar_on_iters,
            log_every_iters=log_every_iters,
            stop_on_nan=stop_on_nan,
            clear_cuda_cache=clear_cuda_cache,
            save_handler=save_handler,
            **kwargs,
        )


setup_common_distrib_training_handlers = setup_common_training_handlers


def _setup_common_training_handlers(
    trainer: Engine,
    to_save: Optional[Mapping] = None,
    save_every_iters: int = 1000,
    output_path: Optional[str] = None,
    lr_scheduler: Optional[Union[ParamScheduler, PyTorchLRScheduler]] = None,
    with_gpu_stats: bool = False,
    output_names: Optional[Iterable[str]] = None,
    with_pbars: bool = True,
    with_pbar_on_iters: bool = True,
    log_every_iters: int = 100,
    stop_on_nan: bool = True,
    clear_cuda_cache: bool = True,
    save_handler: Optional[Union[Callable, BaseSaveHandler]] = None,
    **kwargs: Any,
) -> None:
    if output_path is not None and save_handler is not None:
        raise ValueError(
            "Arguments output_path and save_handler are mutually exclusive. Please, define only one of them"
        )

    if stop_on_nan:
        trainer.add_event_handler(Events.ITERATION_COMPLETED, TerminateOnNan())

    if lr_scheduler is not None:
        if isinstance(lr_scheduler, PyTorchLRScheduler):
            trainer.add_event_handler(Events.ITERATION_COMPLETED, lambda engine: lr_scheduler.step())
        else:
            trainer.add_event_handler(Events.ITERATION_STARTED, lr_scheduler)

    if torch.cuda.is_available() and clear_cuda_cache:
        trainer.add_event_handler(Events.EPOCH_COMPLETED, empty_cuda_cache)

    if to_save is not None:
        if output_path is None and save_handler is None:
            raise ValueError(
                "If to_save argument is provided then output_path or save_handler arguments should be also defined"
            )
        if output_path is not None:
            save_handler = DiskSaver(dirname=output_path, require_empty=False)

        checkpoint_handler = Checkpoint(
            to_save, cast(Union[Callable, BaseSaveHandler], save_handler), filename_prefix="training", **kwargs
        )
        trainer.add_event_handler(Events.ITERATION_COMPLETED(every=save_every_iters), checkpoint_handler)

    if with_gpu_stats:
        GpuInfo().attach(
            trainer, name="gpu", event_name=Events.ITERATION_COMPLETED(every=log_every_iters)  # type: ignore[arg-type]
        )

    if output_names is not None:

        def output_transform(x: Any, index: int, name: str) -> Any:
            if isinstance(x, Mapping):
                return x[name]
            elif isinstance(x, Sequence):
                return x[index]
            elif isinstance(x, (torch.Tensor, numbers.Number)):
                return x
            else:
                raise TypeError(
                    "Unhandled type of update_function's output. "
                    f"It should either mapping or sequence, but given {type(x)}"
                )

        for i, n in enumerate(output_names):
            RunningAverage(output_transform=partial(output_transform, index=i, name=n)).attach(
                trainer, n, usage=RunningBatchWise()
            )

    if with_pbars:
        if with_pbar_on_iters:
            ProgressBar(persist=False).attach(
                trainer, metric_names="all", event_name=Events.ITERATION_COMPLETED(every=log_every_iters)
            )

        ProgressBar(persist=True, bar_format="").attach(
            trainer, event_name=Events.EPOCH_STARTED, closing_event_name=Events.COMPLETED
        )


def _setup_common_distrib_training_handlers(
    trainer: Engine,
    train_sampler: Optional[DistributedSampler] = None,
    to_save: Optional[Mapping] = None,
    save_every_iters: int = 1000,
    output_path: Optional[str] = None,
    lr_scheduler: Optional[Union[ParamScheduler, PyTorchLRScheduler]] = None,
    with_gpu_stats: bool = False,
    output_names: Optional[Iterable[str]] = None,
    with_pbars: bool = True,
    with_pbar_on_iters: bool = True,
    log_every_iters: int = 100,
    stop_on_nan: bool = True,
    clear_cuda_cache: bool = True,
    save_handler: Optional[Union[Callable, BaseSaveHandler]] = None,
    **kwargs: Any,
) -> None:
    _setup_common_training_handlers(
        trainer,
        to_save=to_save,
        output_path=output_path,
        save_every_iters=save_every_iters,
        lr_scheduler=lr_scheduler,
        with_gpu_stats=with_gpu_stats,
        output_names=output_names,
        with_pbars=(idist.get_rank() == 0) and with_pbars,
        with_pbar_on_iters=with_pbar_on_iters,
        log_every_iters=log_every_iters,
        stop_on_nan=stop_on_nan,
        clear_cuda_cache=clear_cuda_cache,
        save_handler=save_handler,
        **kwargs,
    )

    if train_sampler is not None:
        if not isinstance(train_sampler, DistributedSampler):
            raise TypeError("Train sampler should be torch DistributedSampler and have `set_epoch` method")

        @trainer.on(Events.EPOCH_STARTED)
        def distrib_set_epoch(engine: Engine) -> None:
            train_sampler.set_epoch(engine.state.epoch - 1)


def empty_cuda_cache(_: Engine) -> None:
    torch.cuda.empty_cache()
    import gc

    gc.collect()


@deprecated(
    "0.4.0",
    "0.6.0",
    ("Please use instead: setup_tb_logging, setup_visdom_logging or setup_mlflow_logging etc.",),
    raise_exception=True,
)
def setup_any_logging(
    logger: BaseLogger,
    logger_module: Any,
    trainer: Engine,
    optimizers: Optional[Union[Optimizer, Dict[str, Optimizer], Dict[None, Optimizer]]],
    evaluators: Optional[Union[Engine, Dict[str, Engine]]],
    log_every_iters: int,
) -> None:
    pass


def _setup_logging(
    logger: BaseLogger,
    trainer: Engine,
    optimizers: Optional[Union[Optimizer, Dict[str, Optimizer], Dict[None, Optimizer]]],
    evaluators: Optional[Union[Engine, Dict[str, Engine]]],
    log_every_iters: int,
) -> None:
    if optimizers is not None:
        if not isinstance(optimizers, (Optimizer, Mapping)):
            raise TypeError("Argument optimizers should be either a single optimizer or a dictionary or optimizers")

    if evaluators is not None:
        if not isinstance(evaluators, (Engine, Mapping)):
            raise TypeError("Argument evaluators should be either a single engine or a dictionary or engines")

    if log_every_iters is None:
        log_every_iters = 1

    logger.attach_output_handler(
        trainer, event_name=Events.ITERATION_COMPLETED(every=log_every_iters), tag="training", metric_names="all"
    )

    if optimizers is not None:
        # Log optimizer parameters
        if isinstance(optimizers, Optimizer):
            optimizers = {None: optimizers}

        for k, optimizer in optimizers.items():
            logger.attach_opt_params_handler(
                trainer, Events.ITERATION_STARTED(every=log_every_iters), optimizer, param_name="lr", tag=k
            )

    if evaluators is not None:
        # Log evaluation metrics
        if isinstance(evaluators, Engine):
            evaluators = {"validation": evaluators}

        event_name = Events.ITERATION_COMPLETED if isinstance(logger, WandBLogger) else None
        gst = global_step_from_engine(trainer, custom_event_name=event_name)
        for k, evaluator in evaluators.items():
            logger.attach_output_handler(
                evaluator, event_name=Events.COMPLETED, tag=k, metric_names="all", global_step_transform=gst
            )


def setup_tb_logging(
    output_path: str,
    trainer: Engine,
    optimizers: Optional[Union[Optimizer, Dict[str, Optimizer]]] = None,
    evaluators: Optional[Union[Engine, Dict[str, Engine]]] = None,
    log_every_iters: int = 100,
    **kwargs: Any,
) -> TensorboardLogger:
    """Method to setup TensorBoard logging on trainer and a list of evaluators. Logged metrics are:

        - Training metrics, e.g. running average loss values
        - Learning rate(s)
        - Evaluation metrics

    Args:
        output_path: logging directory path
        trainer: trainer engine
        optimizers: single or dictionary of
            torch optimizers. If a dictionary, keys are used as tags arguments for logging.
        evaluators: single or dictionary of evaluators. If a dictionary,
            keys are used as tags arguments for logging.
        log_every_iters: interval for loggers attached to iteration events. To log every iteration,
            value can be set to 1 or None.
        kwargs: optional keyword args to be passed to construct the logger.

    Returns:
        :class:`~ignite.handlers.tensorboard_logger.TensorboardLogger`
    """
    logger = TensorboardLogger(log_dir=output_path, **kwargs)
    _setup_logging(logger, trainer, optimizers, evaluators, log_every_iters)
    return logger


def setup_visdom_logging(
    trainer: Engine,
    optimizers: Optional[Union[Optimizer, Dict[str, Optimizer]]] = None,
    evaluators: Optional[Union[Engine, Dict[str, Engine]]] = None,
    log_every_iters: int = 100,
    **kwargs: Any,
) -> VisdomLogger:
    """Method to setup Visdom logging on trainer and a list of evaluators. Logged metrics are:

        - Training metrics, e.g. running average loss values
        - Learning rate(s)
        - Evaluation metrics

    Args:
        trainer: trainer engine
        optimizers: single or dictionary of
            torch optimizers. If a dictionary, keys are used as tags arguments for logging.
        evaluators: single or dictionary of evaluators. If a dictionary,
            keys are used as tags arguments for logging.
        log_every_iters: interval for loggers attached to iteration events. To log every iteration,
            value can be set to 1 or None.
        kwargs: optional keyword args to be passed to construct the logger.

    Returns:
        :class:`~ignite.handlers.visdom_logger.VisdomLogger`
    """
    logger = VisdomLogger(**kwargs)
    _setup_logging(logger, trainer, optimizers, evaluators, log_every_iters)
    return logger


def setup_mlflow_logging(
    trainer: Engine,
    optimizers: Optional[Union[Optimizer, Dict[str, Optimizer]]] = None,
    evaluators: Optional[Union[Engine, Dict[str, Engine]]] = None,
    log_every_iters: int = 100,
    **kwargs: Any,
) -> MLflowLogger:
    """Method to setup MLflow logging on trainer and a list of evaluators. Logged metrics are:

        - Training metrics, e.g. running average loss values
        - Learning rate(s)
        - Evaluation metrics

    Args:
        trainer: trainer engine
        optimizers: single or dictionary of
            torch optimizers. If a dictionary, keys are used as tags arguments for logging.
        evaluators: single or dictionary of evaluators. If a dictionary,
            keys are used as tags arguments for logging.
        log_every_iters: interval for loggers attached to iteration events. To log every iteration,
            value can be set to 1 or None.
        kwargs: optional keyword args to be passed to construct the logger.

    Returns:
        :class:`~ignite.handlers.mlflow_logger.MLflowLogger`
    """
    logger = MLflowLogger(**kwargs)
    _setup_logging(logger, trainer, optimizers, evaluators, log_every_iters)
    return logger


def setup_neptune_logging(
    trainer: Engine,
    optimizers: Optional[Union[Optimizer, Dict[str, Optimizer]]] = None,
    evaluators: Optional[Union[Engine, Dict[str, Engine]]] = None,
    log_every_iters: int = 100,
    **kwargs: Any,
) -> NeptuneLogger:
    """Method to setup Neptune logging on trainer and a list of evaluators. Logged metrics are:

        - Training metrics, e.g. running average loss values
        - Learning rate(s)
        - Evaluation metrics

    Args:
        trainer: trainer engine
        optimizers: single or dictionary of
            torch optimizers. If a dictionary, keys are used as tags arguments for logging.
        evaluators: single or dictionary of evaluators. If a dictionary,
            keys are used as tags arguments for logging.
        log_every_iters: interval for loggers attached to iteration events. To log every iteration,
            value can be set to 1 or None.
        kwargs: optional keyword args to be passed to construct the logger.

    Returns:
        :class:`~ignite.handlers.neptune_logger.NeptuneLogger`
    """
    logger = NeptuneLogger(**kwargs)
    _setup_logging(logger, trainer, optimizers, evaluators, log_every_iters)
    return logger


def setup_wandb_logging(
    trainer: Engine,
    optimizers: Optional[Union[Optimizer, Dict[str, Optimizer]]] = None,
    evaluators: Optional[Union[Engine, Dict[str, Engine]]] = None,
    log_every_iters: int = 100,
    **kwargs: Any,
) -> WandBLogger:
    """Method to setup WandB logging on trainer and a list of evaluators. Logged metrics are:

        - Training metrics, e.g. running average loss values
        - Learning rate(s)
        - Evaluation metrics

    Args:
        trainer: trainer engine
        optimizers: single or dictionary of
            torch optimizers. If a dictionary, keys are used as tags arguments for logging.
        evaluators: single or dictionary of evaluators. If a dictionary,
            keys are used as tags arguments for logging.
        log_every_iters: interval for loggers attached to iteration events. To log every iteration,
            value can be set to 1 or None.
        kwargs: optional keyword args to be passed to construct the logger.

    Returns:
        :class:`~ignite.handlers.wandb_logger.WandBLogger`
    """
    logger = WandBLogger(**kwargs)
    _setup_logging(logger, trainer, optimizers, evaluators, log_every_iters)
    return logger


def setup_plx_logging(
    trainer: Engine,
    optimizers: Optional[Union[Optimizer, Dict[str, Optimizer]]] = None,
    evaluators: Optional[Union[Engine, Dict[str, Engine]]] = None,
    log_every_iters: int = 100,
    **kwargs: Any,
) -> PolyaxonLogger:
    """Method to setup Polyaxon logging on trainer and a list of evaluators. Logged metrics are:

        - Training metrics, e.g. running average loss values
        - Learning rate(s)
        - Evaluation metrics

    Args:
        trainer: trainer engine
        optimizers: single or dictionary of
            torch optimizers. If a dictionary, keys are used as tags arguments for logging.
        evaluators: single or dictionary of evaluators. If a dictionary,
            keys are used as tags arguments for logging.
        log_every_iters: interval for loggers attached to iteration events. To log every iteration,
            value can be set to 1 or None.
        kwargs: optional keyword args to be passed to construct the logger.

    Returns:
        :class:`~ignite.handlers.polyaxon_logger.PolyaxonLogger`
    """
    logger = PolyaxonLogger(**kwargs)
    _setup_logging(logger, trainer, optimizers, evaluators, log_every_iters)
    return logger


def setup_clearml_logging(
    trainer: Engine,
    optimizers: Optional[Union[Optimizer, Dict[str, Optimizer]]] = None,
    evaluators: Optional[Union[Engine, Dict[str, Engine]]] = None,
    log_every_iters: int = 100,
    **kwargs: Any,
) -> ClearMLLogger:
    """Method to setup ClearML logging on trainer and a list of evaluators. Logged metrics are:

        - Training metrics, e.g. running average loss values
        - Learning rate(s)
        - Evaluation metrics

    Args:
        trainer: trainer engine
        optimizers: single or dictionary of
            torch optimizers. If a dictionary, keys are used as tags arguments for logging.
        evaluators: single or dictionary of evaluators. If a dictionary,
            keys are used as tags arguments for logging.
        log_every_iters: interval for loggers attached to iteration events. To log every iteration,
            value can be set to 1 or None.
        kwargs: optional keyword args to be passed to construct the logger.

    Returns:
        :class:`~ignite.handlers.clearml_logger.ClearMLLogger`
    """
    logger = ClearMLLogger(**kwargs)
    _setup_logging(logger, trainer, optimizers, evaluators, log_every_iters)
    return logger


def setup_trains_logging(
    trainer: Engine,
    optimizers: Optional[Union[Optimizer, Dict[str, Optimizer]]] = None,
    evaluators: Optional[Union[Engine, Dict[str, Engine]]] = None,
    log_every_iters: int = 100,
    **kwargs: Any,
) -> ClearMLLogger:
    """``setup_trains_logging`` was renamed to :func:`~ignite.contrib.engines.common.setup_clearml_logging`."""
    warnings.warn("setup_trains_logging was renamed to setup_clearml_logging.")
    return setup_clearml_logging(trainer, optimizers, evaluators, log_every_iters, **kwargs)


get_default_score_fn = Checkpoint.get_default_score_fn


def gen_save_best_models_by_val_score(
    save_handler: Union[Callable, BaseSaveHandler],
    evaluator: Engine,
    models: Union[torch.nn.Module, Dict[str, torch.nn.Module]],
    metric_name: str,
    n_saved: int = 3,
    trainer: Optional[Engine] = None,
    tag: str = "val",
    score_sign: float = 1.0,
    **kwargs: Any,
) -> Checkpoint:
    """Method adds a handler to ``evaluator`` to save ``n_saved`` of best models based on the metric
    (named by ``metric_name``) provided by ``evaluator`` (i.e. ``evaluator.state.metrics[metric_name]``).
    Models with highest metric value will be retained. The logic of how to store objects is delegated to
    ``save_handler``.

    Args:
        save_handler: Method or callable class to
            use to save engine and other provided objects. Function receives two objects: checkpoint as a dictionary
            and filename. If ``save_handler`` is callable class, it can
            inherit of :class:`~ignite.handlers.checkpoint.BaseSaveHandler` and optionally implement ``remove`` method
            to keep a fixed number of saved checkpoints. In case if user needs to save engine's checkpoint on a disk,
            ``save_handler`` can be defined with :class:`~ignite.handlers.DiskSaver`.
        evaluator: evaluation engine used to provide the score
        models: model or dictionary with the object to save. Objects should have
            implemented ``state_dict`` and ``load_state_dict`` methods.
        metric_name: metric name to use for score evaluation. This metric should be present in
            `evaluator.state.metrics`.
        n_saved: number of best models to store
        trainer: trainer engine to fetch the epoch when saving the best model.
        tag: score name prefix: `{tag}_{metric_name}`. By default, tag is "val".
        score_sign: sign of the score: 1.0 or -1.0. For error-like metrics, e.g. smaller is better,
            a negative score sign should be used (objects with larger score are retained). Default, 1.0.
        kwargs: optional keyword args to be passed to construct :class:`~ignite.handlers.checkpoint.Checkpoint`.

    Returns:
        A :class:`~ignite.handlers.checkpoint.Checkpoint` handler.
    """
    global_step_transform = None
    if trainer is not None:
        global_step_transform = global_step_from_engine(trainer)

    if isinstance(models, nn.Module):
        to_save: Dict[str, nn.Module] = {"model": models}
    else:
        to_save = models

    best_model_handler = Checkpoint(
        to_save,
        save_handler,
        filename_prefix="best",
        n_saved=n_saved,
        global_step_transform=global_step_transform,
        score_name=f"{tag}_{metric_name.lower()}",
        score_function=get_default_score_fn(metric_name, score_sign=score_sign),
        **kwargs,
    )
    evaluator.add_event_handler(Events.COMPLETED, best_model_handler)

    return best_model_handler


def save_best_model_by_val_score(
    output_path: str,
    evaluator: Engine,
    model: torch.nn.Module,
    metric_name: str,
    n_saved: int = 3,
    trainer: Optional[Engine] = None,
    tag: str = "val",
    score_sign: float = 1.0,
    **kwargs: Any,
) -> Checkpoint:
    """Method adds a handler to ``evaluator`` to save on a disk ``n_saved`` of best models based on the metric
    (named by ``metric_name``) provided by ``evaluator`` (i.e. ``evaluator.state.metrics[metric_name]``).
    Models with highest metric value will be retained.

    Args:
        output_path: output path to indicate where to save best models
        evaluator: evaluation engine used to provide the score
        model: model to store
        metric_name: metric name to use for score evaluation. This metric should be present in
            `evaluator.state.metrics`.
        n_saved: number of best models to store
        trainer: trainer engine to fetch the epoch when saving the best model.
        tag: score name prefix: `{tag}_{metric_name}`. By default, tag is "val".
        score_sign: sign of the score: 1.0 or -1.0. For error-like metrics, e.g. smaller is better,
            a negative score sign should be used (objects with larger score are retained). Default, 1.0.

        kwargs: optional keyword args to be passed to construct :class:`~ignite.handlers.checkpoint.Checkpoint`.

    Returns:
        A :class:`~ignite.handlers.checkpoint.Checkpoint` handler.
    """
    return gen_save_best_models_by_val_score(
        save_handler=DiskSaver(dirname=output_path, require_empty=False),
        evaluator=evaluator,
        models=model,
        metric_name=metric_name,
        n_saved=n_saved,
        trainer=trainer,
        tag=tag,
        score_sign=score_sign,
        **kwargs,
    )


def add_early_stopping_by_val_score(
    patience: int,
    evaluator: Engine,
    trainer: Engine,
    metric_name: str,
    score_sign: float = 1.0,
) -> EarlyStopping:
    """Method setups early stopping handler based on the score (named by `metric_name`) provided by `evaluator`.
    Metric value should increase in order to keep training and not early stop.

    Args:
        patience: number of events to wait if no improvement and then stop the training.
        evaluator: evaluation engine used to provide the score
        trainer: trainer engine to stop the run if no improvement.
        metric_name: metric name to use for score evaluation. This metric should be present in
            `evaluator.state.metrics`.
        score_sign: sign of the score: 1.0 or -1.0. For error-like metrics, e.g. smaller is better,
            a negative score sign should be used (objects with larger score are retained). Default, 1.0.

    Returns:
        A :class:`~ignite.handlers.early_stopping.EarlyStopping` handler.
    """
    es_handler = EarlyStopping(
        patience=patience, score_function=get_default_score_fn(metric_name, score_sign=score_sign), trainer=trainer
    )
    evaluator.add_event_handler(Events.COMPLETED, es_handler)

    return es_handler