1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
|
import numbers
import warnings
from functools import partial
from typing import Any, Callable, cast, Dict, Iterable, Mapping, Optional, Sequence, Union
import torch
import torch.nn as nn
from torch.optim.optimizer import Optimizer
from torch.utils.data.distributed import DistributedSampler
# https://github.com/pytorch/ignite/issues/2773
try:
from torch.optim.lr_scheduler import LRScheduler as PyTorchLRScheduler
except ImportError:
from torch.optim.lr_scheduler import _LRScheduler as PyTorchLRScheduler
import ignite.distributed as idist
from ignite.engine import Engine, Events
from ignite.handlers import (
Checkpoint,
ClearMLLogger,
DiskSaver,
EarlyStopping,
global_step_from_engine,
MLflowLogger,
NeptuneLogger,
PolyaxonLogger,
ProgressBar,
TensorboardLogger,
TerminateOnNan,
VisdomLogger,
WandBLogger,
)
from ignite.handlers.base_logger import BaseLogger
from ignite.handlers.checkpoint import BaseSaveHandler
from ignite.handlers.param_scheduler import ParamScheduler
from ignite.metrics import GpuInfo, RunningAverage
from ignite.metrics.metric import RunningBatchWise
from ignite.utils import deprecated
def setup_common_training_handlers(
trainer: Engine,
train_sampler: Optional[DistributedSampler] = None,
to_save: Optional[Mapping] = None,
save_every_iters: int = 1000,
output_path: Optional[str] = None,
lr_scheduler: Optional[Union[ParamScheduler, PyTorchLRScheduler]] = None,
with_gpu_stats: bool = False,
output_names: Optional[Iterable[str]] = None,
with_pbars: bool = True,
with_pbar_on_iters: bool = True,
log_every_iters: int = 100,
stop_on_nan: bool = True,
clear_cuda_cache: bool = True,
save_handler: Optional[Union[Callable, BaseSaveHandler]] = None,
**kwargs: Any,
) -> None:
"""Helper method to setup trainer with common handlers (it also supports distributed configuration):
- :class:`~ignite.handlers.terminate_on_nan.TerminateOnNan`
- handler to setup learning rate scheduling
- :class:`~ignite.handlers.checkpoint.ModelCheckpoint`
- :class:`~ignite.metrics.RunningAverage` on `update_function` output
- Two progress bars on epochs and optionally on iterations
Args:
trainer: trainer engine. Output of trainer's `update_function` should be a dictionary
or sequence or a single tensor.
train_sampler: Optional distributed sampler used to call
`set_epoch` method on epoch started event.
to_save: dictionary with objects to save in the checkpoint. This argument is passed to
:class:`~ignite.handlers.checkpoint.Checkpoint` instance.
save_every_iters: saving interval. By default, `to_save` objects are stored
each 1000 iterations.
output_path: output path to indicate where `to_save` objects are stored. Argument is mutually
exclusive with ``save_handler``.
lr_scheduler: learning rate scheduler
as native torch LRScheduler or ignite's parameter scheduler.
with_gpu_stats: if True, :class:`~ignite.metrics.GpuInfo` is attached to the
trainer. This requires `pynvml` package to be installed.
output_names: list of names associated with `update_function` output dictionary.
with_pbars: if True, two progress bars on epochs and optionally on iterations are attached.
Default, True.
with_pbar_on_iters: if True, a progress bar on iterations is attached to the trainer.
Default, True.
log_every_iters: logging interval for :class:`~ignite.metrics.GpuInfo` and for
epoch-wise progress bar. Default, 100.
stop_on_nan: if True, :class:`~ignite.handlers.terminate_on_nan.TerminateOnNan` handler is added to the trainer.
Default, True.
clear_cuda_cache: if True, `torch.cuda.empty_cache()` is called every end of epoch.
Default, True.
save_handler: Method or callable
class to use to store ``to_save``. See :class:`~ignite.handlers.checkpoint.Checkpoint` for more details.
Argument is mutually exclusive with ``output_path``.
kwargs: optional keyword args to be passed to construct :class:`~ignite.handlers.checkpoint.Checkpoint`.
"""
if idist.get_world_size() > 1:
_setup_common_distrib_training_handlers(
trainer,
train_sampler=train_sampler,
to_save=to_save,
save_every_iters=save_every_iters,
output_path=output_path,
lr_scheduler=lr_scheduler,
with_gpu_stats=with_gpu_stats,
output_names=output_names,
with_pbars=with_pbars,
with_pbar_on_iters=with_pbar_on_iters,
log_every_iters=log_every_iters,
stop_on_nan=stop_on_nan,
clear_cuda_cache=clear_cuda_cache,
save_handler=save_handler,
**kwargs,
)
else:
if train_sampler is not None and isinstance(train_sampler, DistributedSampler):
warnings.warn(
"Argument train_sampler is a distributed sampler,"
" but either there is no distributed setting or world size is < 2. "
"Train sampler argument will be ignored",
UserWarning,
)
_setup_common_training_handlers(
trainer,
to_save=to_save,
save_every_iters=save_every_iters,
output_path=output_path,
lr_scheduler=lr_scheduler,
with_gpu_stats=with_gpu_stats,
output_names=output_names,
with_pbars=with_pbars,
with_pbar_on_iters=with_pbar_on_iters,
log_every_iters=log_every_iters,
stop_on_nan=stop_on_nan,
clear_cuda_cache=clear_cuda_cache,
save_handler=save_handler,
**kwargs,
)
setup_common_distrib_training_handlers = setup_common_training_handlers
def _setup_common_training_handlers(
trainer: Engine,
to_save: Optional[Mapping] = None,
save_every_iters: int = 1000,
output_path: Optional[str] = None,
lr_scheduler: Optional[Union[ParamScheduler, PyTorchLRScheduler]] = None,
with_gpu_stats: bool = False,
output_names: Optional[Iterable[str]] = None,
with_pbars: bool = True,
with_pbar_on_iters: bool = True,
log_every_iters: int = 100,
stop_on_nan: bool = True,
clear_cuda_cache: bool = True,
save_handler: Optional[Union[Callable, BaseSaveHandler]] = None,
**kwargs: Any,
) -> None:
if output_path is not None and save_handler is not None:
raise ValueError(
"Arguments output_path and save_handler are mutually exclusive. Please, define only one of them"
)
if stop_on_nan:
trainer.add_event_handler(Events.ITERATION_COMPLETED, TerminateOnNan())
if lr_scheduler is not None:
if isinstance(lr_scheduler, PyTorchLRScheduler):
trainer.add_event_handler(Events.ITERATION_COMPLETED, lambda engine: lr_scheduler.step())
else:
trainer.add_event_handler(Events.ITERATION_STARTED, lr_scheduler)
if torch.cuda.is_available() and clear_cuda_cache:
trainer.add_event_handler(Events.EPOCH_COMPLETED, empty_cuda_cache)
if to_save is not None:
if output_path is None and save_handler is None:
raise ValueError(
"If to_save argument is provided then output_path or save_handler arguments should be also defined"
)
if output_path is not None:
save_handler = DiskSaver(dirname=output_path, require_empty=False)
checkpoint_handler = Checkpoint(
to_save, cast(Union[Callable, BaseSaveHandler], save_handler), filename_prefix="training", **kwargs
)
trainer.add_event_handler(Events.ITERATION_COMPLETED(every=save_every_iters), checkpoint_handler)
if with_gpu_stats:
GpuInfo().attach(
trainer, name="gpu", event_name=Events.ITERATION_COMPLETED(every=log_every_iters) # type: ignore[arg-type]
)
if output_names is not None:
def output_transform(x: Any, index: int, name: str) -> Any:
if isinstance(x, Mapping):
return x[name]
elif isinstance(x, Sequence):
return x[index]
elif isinstance(x, (torch.Tensor, numbers.Number)):
return x
else:
raise TypeError(
"Unhandled type of update_function's output. "
f"It should either mapping or sequence, but given {type(x)}"
)
for i, n in enumerate(output_names):
RunningAverage(output_transform=partial(output_transform, index=i, name=n)).attach(
trainer, n, usage=RunningBatchWise()
)
if with_pbars:
if with_pbar_on_iters:
ProgressBar(persist=False).attach(
trainer, metric_names="all", event_name=Events.ITERATION_COMPLETED(every=log_every_iters)
)
ProgressBar(persist=True, bar_format="").attach(
trainer, event_name=Events.EPOCH_STARTED, closing_event_name=Events.COMPLETED
)
def _setup_common_distrib_training_handlers(
trainer: Engine,
train_sampler: Optional[DistributedSampler] = None,
to_save: Optional[Mapping] = None,
save_every_iters: int = 1000,
output_path: Optional[str] = None,
lr_scheduler: Optional[Union[ParamScheduler, PyTorchLRScheduler]] = None,
with_gpu_stats: bool = False,
output_names: Optional[Iterable[str]] = None,
with_pbars: bool = True,
with_pbar_on_iters: bool = True,
log_every_iters: int = 100,
stop_on_nan: bool = True,
clear_cuda_cache: bool = True,
save_handler: Optional[Union[Callable, BaseSaveHandler]] = None,
**kwargs: Any,
) -> None:
_setup_common_training_handlers(
trainer,
to_save=to_save,
output_path=output_path,
save_every_iters=save_every_iters,
lr_scheduler=lr_scheduler,
with_gpu_stats=with_gpu_stats,
output_names=output_names,
with_pbars=(idist.get_rank() == 0) and with_pbars,
with_pbar_on_iters=with_pbar_on_iters,
log_every_iters=log_every_iters,
stop_on_nan=stop_on_nan,
clear_cuda_cache=clear_cuda_cache,
save_handler=save_handler,
**kwargs,
)
if train_sampler is not None:
if not isinstance(train_sampler, DistributedSampler):
raise TypeError("Train sampler should be torch DistributedSampler and have `set_epoch` method")
@trainer.on(Events.EPOCH_STARTED)
def distrib_set_epoch(engine: Engine) -> None:
train_sampler.set_epoch(engine.state.epoch - 1)
def empty_cuda_cache(_: Engine) -> None:
torch.cuda.empty_cache()
import gc
gc.collect()
@deprecated(
"0.4.0",
"0.6.0",
("Please use instead: setup_tb_logging, setup_visdom_logging or setup_mlflow_logging etc.",),
raise_exception=True,
)
def setup_any_logging(
logger: BaseLogger,
logger_module: Any,
trainer: Engine,
optimizers: Optional[Union[Optimizer, Dict[str, Optimizer], Dict[None, Optimizer]]],
evaluators: Optional[Union[Engine, Dict[str, Engine]]],
log_every_iters: int,
) -> None:
pass
def _setup_logging(
logger: BaseLogger,
trainer: Engine,
optimizers: Optional[Union[Optimizer, Dict[str, Optimizer], Dict[None, Optimizer]]],
evaluators: Optional[Union[Engine, Dict[str, Engine]]],
log_every_iters: int,
) -> None:
if optimizers is not None:
if not isinstance(optimizers, (Optimizer, Mapping)):
raise TypeError("Argument optimizers should be either a single optimizer or a dictionary or optimizers")
if evaluators is not None:
if not isinstance(evaluators, (Engine, Mapping)):
raise TypeError("Argument evaluators should be either a single engine or a dictionary or engines")
if log_every_iters is None:
log_every_iters = 1
logger.attach_output_handler(
trainer, event_name=Events.ITERATION_COMPLETED(every=log_every_iters), tag="training", metric_names="all"
)
if optimizers is not None:
# Log optimizer parameters
if isinstance(optimizers, Optimizer):
optimizers = {None: optimizers}
for k, optimizer in optimizers.items():
logger.attach_opt_params_handler(
trainer, Events.ITERATION_STARTED(every=log_every_iters), optimizer, param_name="lr", tag=k
)
if evaluators is not None:
# Log evaluation metrics
if isinstance(evaluators, Engine):
evaluators = {"validation": evaluators}
event_name = Events.ITERATION_COMPLETED if isinstance(logger, WandBLogger) else None
gst = global_step_from_engine(trainer, custom_event_name=event_name)
for k, evaluator in evaluators.items():
logger.attach_output_handler(
evaluator, event_name=Events.COMPLETED, tag=k, metric_names="all", global_step_transform=gst
)
def setup_tb_logging(
output_path: str,
trainer: Engine,
optimizers: Optional[Union[Optimizer, Dict[str, Optimizer]]] = None,
evaluators: Optional[Union[Engine, Dict[str, Engine]]] = None,
log_every_iters: int = 100,
**kwargs: Any,
) -> TensorboardLogger:
"""Method to setup TensorBoard logging on trainer and a list of evaluators. Logged metrics are:
- Training metrics, e.g. running average loss values
- Learning rate(s)
- Evaluation metrics
Args:
output_path: logging directory path
trainer: trainer engine
optimizers: single or dictionary of
torch optimizers. If a dictionary, keys are used as tags arguments for logging.
evaluators: single or dictionary of evaluators. If a dictionary,
keys are used as tags arguments for logging.
log_every_iters: interval for loggers attached to iteration events. To log every iteration,
value can be set to 1 or None.
kwargs: optional keyword args to be passed to construct the logger.
Returns:
:class:`~ignite.handlers.tensorboard_logger.TensorboardLogger`
"""
logger = TensorboardLogger(log_dir=output_path, **kwargs)
_setup_logging(logger, trainer, optimizers, evaluators, log_every_iters)
return logger
def setup_visdom_logging(
trainer: Engine,
optimizers: Optional[Union[Optimizer, Dict[str, Optimizer]]] = None,
evaluators: Optional[Union[Engine, Dict[str, Engine]]] = None,
log_every_iters: int = 100,
**kwargs: Any,
) -> VisdomLogger:
"""Method to setup Visdom logging on trainer and a list of evaluators. Logged metrics are:
- Training metrics, e.g. running average loss values
- Learning rate(s)
- Evaluation metrics
Args:
trainer: trainer engine
optimizers: single or dictionary of
torch optimizers. If a dictionary, keys are used as tags arguments for logging.
evaluators: single or dictionary of evaluators. If a dictionary,
keys are used as tags arguments for logging.
log_every_iters: interval for loggers attached to iteration events. To log every iteration,
value can be set to 1 or None.
kwargs: optional keyword args to be passed to construct the logger.
Returns:
:class:`~ignite.handlers.visdom_logger.VisdomLogger`
"""
logger = VisdomLogger(**kwargs)
_setup_logging(logger, trainer, optimizers, evaluators, log_every_iters)
return logger
def setup_mlflow_logging(
trainer: Engine,
optimizers: Optional[Union[Optimizer, Dict[str, Optimizer]]] = None,
evaluators: Optional[Union[Engine, Dict[str, Engine]]] = None,
log_every_iters: int = 100,
**kwargs: Any,
) -> MLflowLogger:
"""Method to setup MLflow logging on trainer and a list of evaluators. Logged metrics are:
- Training metrics, e.g. running average loss values
- Learning rate(s)
- Evaluation metrics
Args:
trainer: trainer engine
optimizers: single or dictionary of
torch optimizers. If a dictionary, keys are used as tags arguments for logging.
evaluators: single or dictionary of evaluators. If a dictionary,
keys are used as tags arguments for logging.
log_every_iters: interval for loggers attached to iteration events. To log every iteration,
value can be set to 1 or None.
kwargs: optional keyword args to be passed to construct the logger.
Returns:
:class:`~ignite.handlers.mlflow_logger.MLflowLogger`
"""
logger = MLflowLogger(**kwargs)
_setup_logging(logger, trainer, optimizers, evaluators, log_every_iters)
return logger
def setup_neptune_logging(
trainer: Engine,
optimizers: Optional[Union[Optimizer, Dict[str, Optimizer]]] = None,
evaluators: Optional[Union[Engine, Dict[str, Engine]]] = None,
log_every_iters: int = 100,
**kwargs: Any,
) -> NeptuneLogger:
"""Method to setup Neptune logging on trainer and a list of evaluators. Logged metrics are:
- Training metrics, e.g. running average loss values
- Learning rate(s)
- Evaluation metrics
Args:
trainer: trainer engine
optimizers: single or dictionary of
torch optimizers. If a dictionary, keys are used as tags arguments for logging.
evaluators: single or dictionary of evaluators. If a dictionary,
keys are used as tags arguments for logging.
log_every_iters: interval for loggers attached to iteration events. To log every iteration,
value can be set to 1 or None.
kwargs: optional keyword args to be passed to construct the logger.
Returns:
:class:`~ignite.handlers.neptune_logger.NeptuneLogger`
"""
logger = NeptuneLogger(**kwargs)
_setup_logging(logger, trainer, optimizers, evaluators, log_every_iters)
return logger
def setup_wandb_logging(
trainer: Engine,
optimizers: Optional[Union[Optimizer, Dict[str, Optimizer]]] = None,
evaluators: Optional[Union[Engine, Dict[str, Engine]]] = None,
log_every_iters: int = 100,
**kwargs: Any,
) -> WandBLogger:
"""Method to setup WandB logging on trainer and a list of evaluators. Logged metrics are:
- Training metrics, e.g. running average loss values
- Learning rate(s)
- Evaluation metrics
Args:
trainer: trainer engine
optimizers: single or dictionary of
torch optimizers. If a dictionary, keys are used as tags arguments for logging.
evaluators: single or dictionary of evaluators. If a dictionary,
keys are used as tags arguments for logging.
log_every_iters: interval for loggers attached to iteration events. To log every iteration,
value can be set to 1 or None.
kwargs: optional keyword args to be passed to construct the logger.
Returns:
:class:`~ignite.handlers.wandb_logger.WandBLogger`
"""
logger = WandBLogger(**kwargs)
_setup_logging(logger, trainer, optimizers, evaluators, log_every_iters)
return logger
def setup_plx_logging(
trainer: Engine,
optimizers: Optional[Union[Optimizer, Dict[str, Optimizer]]] = None,
evaluators: Optional[Union[Engine, Dict[str, Engine]]] = None,
log_every_iters: int = 100,
**kwargs: Any,
) -> PolyaxonLogger:
"""Method to setup Polyaxon logging on trainer and a list of evaluators. Logged metrics are:
- Training metrics, e.g. running average loss values
- Learning rate(s)
- Evaluation metrics
Args:
trainer: trainer engine
optimizers: single or dictionary of
torch optimizers. If a dictionary, keys are used as tags arguments for logging.
evaluators: single or dictionary of evaluators. If a dictionary,
keys are used as tags arguments for logging.
log_every_iters: interval for loggers attached to iteration events. To log every iteration,
value can be set to 1 or None.
kwargs: optional keyword args to be passed to construct the logger.
Returns:
:class:`~ignite.handlers.polyaxon_logger.PolyaxonLogger`
"""
logger = PolyaxonLogger(**kwargs)
_setup_logging(logger, trainer, optimizers, evaluators, log_every_iters)
return logger
def setup_clearml_logging(
trainer: Engine,
optimizers: Optional[Union[Optimizer, Dict[str, Optimizer]]] = None,
evaluators: Optional[Union[Engine, Dict[str, Engine]]] = None,
log_every_iters: int = 100,
**kwargs: Any,
) -> ClearMLLogger:
"""Method to setup ClearML logging on trainer and a list of evaluators. Logged metrics are:
- Training metrics, e.g. running average loss values
- Learning rate(s)
- Evaluation metrics
Args:
trainer: trainer engine
optimizers: single or dictionary of
torch optimizers. If a dictionary, keys are used as tags arguments for logging.
evaluators: single or dictionary of evaluators. If a dictionary,
keys are used as tags arguments for logging.
log_every_iters: interval for loggers attached to iteration events. To log every iteration,
value can be set to 1 or None.
kwargs: optional keyword args to be passed to construct the logger.
Returns:
:class:`~ignite.handlers.clearml_logger.ClearMLLogger`
"""
logger = ClearMLLogger(**kwargs)
_setup_logging(logger, trainer, optimizers, evaluators, log_every_iters)
return logger
def setup_trains_logging(
trainer: Engine,
optimizers: Optional[Union[Optimizer, Dict[str, Optimizer]]] = None,
evaluators: Optional[Union[Engine, Dict[str, Engine]]] = None,
log_every_iters: int = 100,
**kwargs: Any,
) -> ClearMLLogger:
"""``setup_trains_logging`` was renamed to :func:`~ignite.contrib.engines.common.setup_clearml_logging`."""
warnings.warn("setup_trains_logging was renamed to setup_clearml_logging.")
return setup_clearml_logging(trainer, optimizers, evaluators, log_every_iters, **kwargs)
get_default_score_fn = Checkpoint.get_default_score_fn
def gen_save_best_models_by_val_score(
save_handler: Union[Callable, BaseSaveHandler],
evaluator: Engine,
models: Union[torch.nn.Module, Dict[str, torch.nn.Module]],
metric_name: str,
n_saved: int = 3,
trainer: Optional[Engine] = None,
tag: str = "val",
score_sign: float = 1.0,
**kwargs: Any,
) -> Checkpoint:
"""Method adds a handler to ``evaluator`` to save ``n_saved`` of best models based on the metric
(named by ``metric_name``) provided by ``evaluator`` (i.e. ``evaluator.state.metrics[metric_name]``).
Models with highest metric value will be retained. The logic of how to store objects is delegated to
``save_handler``.
Args:
save_handler: Method or callable class to
use to save engine and other provided objects. Function receives two objects: checkpoint as a dictionary
and filename. If ``save_handler`` is callable class, it can
inherit of :class:`~ignite.handlers.checkpoint.BaseSaveHandler` and optionally implement ``remove`` method
to keep a fixed number of saved checkpoints. In case if user needs to save engine's checkpoint on a disk,
``save_handler`` can be defined with :class:`~ignite.handlers.DiskSaver`.
evaluator: evaluation engine used to provide the score
models: model or dictionary with the object to save. Objects should have
implemented ``state_dict`` and ``load_state_dict`` methods.
metric_name: metric name to use for score evaluation. This metric should be present in
`evaluator.state.metrics`.
n_saved: number of best models to store
trainer: trainer engine to fetch the epoch when saving the best model.
tag: score name prefix: `{tag}_{metric_name}`. By default, tag is "val".
score_sign: sign of the score: 1.0 or -1.0. For error-like metrics, e.g. smaller is better,
a negative score sign should be used (objects with larger score are retained). Default, 1.0.
kwargs: optional keyword args to be passed to construct :class:`~ignite.handlers.checkpoint.Checkpoint`.
Returns:
A :class:`~ignite.handlers.checkpoint.Checkpoint` handler.
"""
global_step_transform = None
if trainer is not None:
global_step_transform = global_step_from_engine(trainer)
if isinstance(models, nn.Module):
to_save: Dict[str, nn.Module] = {"model": models}
else:
to_save = models
best_model_handler = Checkpoint(
to_save,
save_handler,
filename_prefix="best",
n_saved=n_saved,
global_step_transform=global_step_transform,
score_name=f"{tag}_{metric_name.lower()}",
score_function=get_default_score_fn(metric_name, score_sign=score_sign),
**kwargs,
)
evaluator.add_event_handler(Events.COMPLETED, best_model_handler)
return best_model_handler
def save_best_model_by_val_score(
output_path: str,
evaluator: Engine,
model: torch.nn.Module,
metric_name: str,
n_saved: int = 3,
trainer: Optional[Engine] = None,
tag: str = "val",
score_sign: float = 1.0,
**kwargs: Any,
) -> Checkpoint:
"""Method adds a handler to ``evaluator`` to save on a disk ``n_saved`` of best models based on the metric
(named by ``metric_name``) provided by ``evaluator`` (i.e. ``evaluator.state.metrics[metric_name]``).
Models with highest metric value will be retained.
Args:
output_path: output path to indicate where to save best models
evaluator: evaluation engine used to provide the score
model: model to store
metric_name: metric name to use for score evaluation. This metric should be present in
`evaluator.state.metrics`.
n_saved: number of best models to store
trainer: trainer engine to fetch the epoch when saving the best model.
tag: score name prefix: `{tag}_{metric_name}`. By default, tag is "val".
score_sign: sign of the score: 1.0 or -1.0. For error-like metrics, e.g. smaller is better,
a negative score sign should be used (objects with larger score are retained). Default, 1.0.
kwargs: optional keyword args to be passed to construct :class:`~ignite.handlers.checkpoint.Checkpoint`.
Returns:
A :class:`~ignite.handlers.checkpoint.Checkpoint` handler.
"""
return gen_save_best_models_by_val_score(
save_handler=DiskSaver(dirname=output_path, require_empty=False),
evaluator=evaluator,
models=model,
metric_name=metric_name,
n_saved=n_saved,
trainer=trainer,
tag=tag,
score_sign=score_sign,
**kwargs,
)
def add_early_stopping_by_val_score(
patience: int,
evaluator: Engine,
trainer: Engine,
metric_name: str,
score_sign: float = 1.0,
) -> EarlyStopping:
"""Method setups early stopping handler based on the score (named by `metric_name`) provided by `evaluator`.
Metric value should increase in order to keep training and not early stop.
Args:
patience: number of events to wait if no improvement and then stop the training.
evaluator: evaluation engine used to provide the score
trainer: trainer engine to stop the run if no improvement.
metric_name: metric name to use for score evaluation. This metric should be present in
`evaluator.state.metrics`.
score_sign: sign of the score: 1.0 or -1.0. For error-like metrics, e.g. smaller is better,
a negative score sign should be used (objects with larger score are retained). Default, 1.0.
Returns:
A :class:`~ignite.handlers.early_stopping.EarlyStopping` handler.
"""
es_handler = EarlyStopping(
patience=patience, score_function=get_default_score_fn(metric_name, score_sign=score_sign), trainer=trainer
)
evaluator.add_event_handler(Events.COMPLETED, es_handler)
return es_handler
|