1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
import warnings
from typing import Any, Callable, cast, List, Mapping, Optional, Tuple
import torch
from ignite.distributed.comp_models.base import ComputationModel
try:
import horovod.torch as hvd
try:
# old API
from horovod.run.runner import run as hvd_mp_spawn
except ImportError:
# new API: https://github.com/horovod/horovod/pull/2099
from horovod import run as hvd_mp_spawn
has_hvd_support = True
except ImportError:
has_hvd_support = False
if has_hvd_support:
HOROVOD = "horovod"
class _HorovodDistModel(ComputationModel):
"""Private class for `Horovod <https://horovod.readthedocs.io/en/stable/>`_ distributed computation model."""
name = "horovod-dist"
available_backends = (HOROVOD,)
@staticmethod
def _get_hvd_rank() -> int:
try:
rank = hvd.rank()
except ValueError as e:
rank = -1
return rank
@staticmethod
def create_from_context() -> Optional["_HorovodDistModel"]:
rank = _HorovodDistModel._get_hvd_rank()
# hvd must be initialized
if not rank > -1:
return None
return _HorovodDistModel()
@staticmethod
def create_from_backend(backend: str = HOROVOD, **kwargs: Any) -> "_HorovodDistModel":
if backend not in _HorovodDistModel.available_backends:
raise ValueError(f"Backend should be one of '{_HorovodDistModel.available_backends}'")
rank = _HorovodDistModel._get_hvd_rank()
# hvd must be not initialized
if rank > -1:
raise RuntimeError("Can not re-initialize Horovod if it is already initialized")
return _HorovodDistModel(backend, **kwargs)
def __init__(self, backend: Optional[str] = None, **kwargs: Any) -> None:
"""This is a private method. Please, use `create_from_backend` or `create_from_context`"""
super(_HorovodDistModel, self).__init__()
if backend is not None:
self._create_from_backend(backend, **kwargs)
else:
self._init_from_context()
def _create_from_backend(self, backend: str, **kwargs: Any) -> None:
self._backend: str = backend
comm = kwargs.get("comm", None)
hvd.init(comm=comm)
self._setup_attrs()
if torch.cuda.is_available():
torch.cuda.set_device(self.get_local_rank())
def _init_from_context(self) -> None:
self._backend = HOROVOD
self._setup_attrs()
def _compute_nproc_per_node(self) -> int:
return hvd.local_size()
def get_local_rank(self) -> int:
return hvd.local_rank()
def get_rank(self) -> int:
return hvd.rank()
def get_world_size(self) -> int:
return hvd.size()
def get_nproc_per_node(self) -> int:
return cast(int, self._nproc_per_node)
def get_nnodes(self) -> int:
return cast(int, self._nnodes)
def get_node_rank(self) -> int:
return cast(int, self._node)
def device(self) -> torch.device:
if torch.cuda.is_available():
index = torch.cuda.current_device()
if index < self.get_local_rank():
warnings.warn(
"Current device index is less than current local rank. "
"Please, make sure to call torch.cuda.set_device(local_rank)."
)
return torch.device(f"cuda:{index}")
return torch.device("cpu")
def backend(self) -> str:
return self._backend
def finalize(self) -> None:
hvd.shutdown()
@staticmethod
def _dist_worker_task_fn(backend: str, fn: Callable, args: Tuple, kwargs_dict: Mapping) -> None:
from ignite.distributed.utils import _set_model, finalize
model = _HorovodDistModel.create_from_backend(backend)
_set_model(model)
fn(model.get_local_rank(), *args, **kwargs_dict)
finalize()
@staticmethod
def spawn(
fn: Callable,
args: Tuple,
kwargs_dict: Optional[Mapping] = None,
nproc_per_node: int = 1,
hosts: Optional[str] = None,
backend: str = HOROVOD,
**kwargs: Any,
) -> None:
c1 = "nnodes" in kwargs and kwargs["nnodes"] > 1
c2 = "node_rank" in kwargs and kwargs["node_rank"] > 0
if c1 or c2:
raise RuntimeError(
"For multi-node configuration, please set 'hosts' argument instead according to horovod.run API."
)
if "nnodes" in kwargs:
# Remove 'nnodes=1' as it is an unexpected keyword argument for horovod.run
del kwargs["nnodes"]
if "node_rank" in kwargs:
# Remove 'node_rank=0' as it is an unexpected keyword argument for horovod.run
del kwargs["node_rank"]
hvd_mp_spawn(
_HorovodDistModel._dist_worker_task_fn,
args=(HOROVOD, fn, args, kwargs_dict),
num_proc=nproc_per_node,
hosts=hosts,
**kwargs,
)
_reduce_op_map = {
"SUM": hvd.mpi_ops.Sum,
"AVERAGE": hvd.mpi_ops.Average,
"ADASUM": hvd.mpi_ops.Adasum,
}
_manual_reduce_op_map = {"MIN": torch.min, "MAX": torch.max, "PRODUCT": torch.prod}
def _do_all_reduce(self, tensor: torch.Tensor, op: str = "SUM", group: Optional[Any] = None) -> torch.Tensor:
if group is not None:
raise NotImplementedError("all_reduce with group for horovod is not implemented")
if op in self._manual_reduce_op_map:
op_fn = self._manual_reduce_op_map[op]
return self._do_manual_all_reduce(tensor, op_fn)
if op not in self._reduce_op_map:
raise ValueError(f"Unsupported reduction operation: '{op}'")
op = self._reduce_op_map[op]
return hvd.allreduce(tensor, op=op)
def _do_manual_all_reduce(self, tensor: torch.Tensor, op: Any) -> torch.Tensor:
# We have to unsqueeze otherwise tensors will be gathered into a single tensor
# without splitting (e.g. [1, 1, 1, 3, 3, 3] instead of [[1, 1, 1], [3, 3, 3]])
# and reduction op wont work as expected
res = self._do_all_gather(tensor.unsqueeze(0))
reduced_res = op(res, dim=0)
if isinstance(reduced_res, torch.Tensor):
return reduced_res
# output can also torch min/max_return_type: (min/max_vals, indices)
return reduced_res[0]
def _do_all_gather(self, tensor: torch.Tensor, group: Optional[Any] = None) -> torch.Tensor:
if group is not None:
raise NotImplementedError("all_gather with group for horovod is not implemented")
if tensor.ndimension() == 0:
tensor = tensor.unsqueeze(0)
return hvd.allgather(tensor)
def _do_all_gather_object(self, tensor: Any, group: Optional[Any] = None) -> List[Any]:
if group is not None:
raise NotImplementedError("all_gather with group for horovod is not implemented")
return hvd.allgather_object(tensor)
def _do_new_group(self, ranks: List[int], **kwargs: Any) -> Any:
return hvd.ProcessSet(ranks)
def _do_broadcast(self, tensor: torch.Tensor, src: int) -> torch.Tensor:
return hvd.broadcast(tensor, root_rank=src)
def barrier(self) -> None:
# https://github.com/horovod/horovod/issues/159#issuecomment-424834603
# hvd.allreduce(torch.tensor(0, device=self.device()), name="barrier")
hvd.allreduce(torch.tensor(0, device="cpu"), name="barrier")
|