1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
from typing import Any, Callable, Dict, Optional
from ignite.distributed import utils as idist
from ignite.utils import setup_logger
__all__ = [
"Parallel",
]
class Parallel:
"""Distributed launcher context manager to simplify distributed configuration setup for multiple backends:
- backends from native torch distributed configuration: "nccl", "gloo" and "mpi" (if available)
- XLA on TPUs via `pytorch/xla <https://github.com/pytorch/xla>`_ (if installed)
- using `Horovod distributed framework <https://horovod.readthedocs.io>`_ (if installed)
Namely, it can:
1) Spawn ``nproc_per_node`` child processes and initialize a processing group according to
provided ``backend`` (useful for standalone scripts).
2) Only initialize a processing group given the ``backend``
(useful with tools like `torchrun`_, `horovodrun`_, etc).
Args:
backend: backend to use: `nccl`, `gloo`, `xla-tpu`, `horovod`. If None, no distributed
configuration.
nproc_per_node: optional argument, number of processes per
node to specify. If not None, :meth:`~ignite.distributed.launcher.Parallel.run`
will spawn ``nproc_per_node`` processes that run input function with its arguments.
nnodes: optional argument, number of nodes participating in distributed configuration.
If not None, :meth:`~ignite.distributed.launcher.Parallel.run` will spawn ``nproc_per_node``
processes that run input function with its arguments. Total world size is `nproc_per_node * nnodes`.
This option is only supported by native torch distributed module. For other modules, please setup
``spawn_kwargs`` with backend specific arguments.
node_rank: optional argument, current machine index. Mandatory argument if ``nnodes`` is
specified and larger than one.
This option is only supported by native torch distributed module. For other modules, please setup
``spawn_kwargs`` with backend specific arguments.
master_addr: optional argument, master node TCP/IP address for torch native backends
(`nccl`, `gloo`). Mandatory argument if ``nnodes`` is specified and larger than one.
master_port: optional argument, master node port for torch native backends
(`nccl`, `gloo`). Mandatory argument if ``master_addr`` is specified.
init_method: optional argument to specify processing group initialization method for torch native
backends (`nccl`, `gloo`). Default, "env://".
See more info: `dist.init_process_group`_.
spawn_kwargs: kwargs to ``idist.spawn`` function.
Examples:
1) Single node or Multi-node, Multi-GPU training launched with `torchrun` or `horovodrun`_
tools
Single node option with 4 GPUs
.. code-block:: bash
torchrun --nproc_per_node=4 main.py
# or if installed horovod
horovodrun -np=4 python main.py
Multi-node option : 2 nodes with 8 GPUs each
.. code-block:: bash
## node 0
torchrun --nnodes=2 --node_rank=0 --master_addr=master --master_port=3344 \
--nproc_per_node=8 main.py
# or if installed horovod
horovodrun -np 16 -H hostname1:8,hostname2:8 python main.py
## node 1
torchrun --nnodes=2 --node_rank=1 --master_addr=master --master_port=3344 \
--nproc_per_node=8 main.py
User code is the same for both options:
.. code-block:: python
# main.py
import ignite.distributed as idist
def training(local_rank, config, **kwargs):
# ...
print(idist.get_rank(), ": run with config:", config, "- backend=", idist.backend())
# ...
backend = "nccl" # or "horovod" if package is installed
config = {"key": "value"}
with idist.Parallel(backend=backend) as parallel:
parallel.run(training, config, a=1, b=2)
2) Single node, Multi-GPU training launched with `python`
.. code-block:: bash
python main.py
.. code-block:: python
# main.py
import ignite.distributed as idist
def training(local_rank, config, **kwargs):
# ...
print(idist.get_rank(), ": run with config:", config, "- backend=", idist.backend())
# ...
backend = "nccl" # or "horovod" if package is installed
# no "init_method" was specified , "env://" will be used
with idist.Parallel(backend=backend, nproc_per_node=4) as parallel:
parallel.run(training, config, a=1, b=2)
Initializing the process using ``file://``
.. code-block:: python
with idist.Parallel(backend=backend, init_method='file:///d:/tmp/some_file', nproc_per_node=4) as parallel:
parallel.run(training, config, a=1, b=2)
Initializing the process using ``tcp://``
.. code-block:: python
with idist.Parallel(backend=backend, init_method='tcp://10.1.1.20:23456', nproc_per_node=4) as parallel:
parallel.run(training, config, a=1, b=2)
3) Single node, Multi-TPU training launched with `python`
.. code-block:: bash
python main.py
.. code-block:: python
# main.py
import ignite.distributed as idist
def training(local_rank, config, **kwargs):
# ...
print(idist.get_rank(), ": run with config:", config, "- backend=", idist.backend())
# ...
config = {"key": "value"}
with idist.Parallel(backend="xla-tpu", nproc_per_node=8) as parallel:
parallel.run(training, config, a=1, b=2)
4) Multi-node, Multi-GPU training launched with `python`. For example, 2 nodes with 8 GPUs:
Using torch native distributed framework:
.. code-block:: bash
# node 0
python main.py --node_rank=0
# node 1
python main.py --node_rank=1
.. code-block:: python
# main.py
import ignite.distributed as idist
def training(local_rank, config, **kwargs):
# ...
print(idist.get_rank(), ": run with config:", config, "- backend=", idist.backend())
# ...
dist_config = {
"nproc_per_node": 8,
"nnodes": 2,
"node_rank": args.node_rank,
"master_addr": "master",
"master_port": 15000
}
config = {"key": "value"}
with idist.Parallel(backend="nccl", **dist_config) as parallel:
parallel.run(training, config, a=1, b=2)
.. _torchrun: https://pytorch.org/docs/stable/elastic/run.html#launcher-api
.. _horovodrun: https://horovod.readthedocs.io/en/latest/api.html#module-horovod.run
.. _dist.init_process_group: https://pytorch.org/docs/stable/distributed.html#torch.distributed.init_process_group
.. versionchanged:: 0.4.2
``backend`` now accepts `horovod` distributed framework.
.. versionchanged:: 0.4.5
``init_method`` added.
"""
def __init__(
self,
backend: Optional[str] = None,
nproc_per_node: Optional[int] = None,
nnodes: Optional[int] = None,
node_rank: Optional[int] = None,
master_addr: Optional[str] = None,
master_port: Optional[int] = None,
init_method: Optional[str] = None,
**spawn_kwargs: Any,
) -> None:
if backend is not None:
if backend not in idist.available_backends():
raise ValueError(f"Unknown backend '{backend}'. Available backends: {idist.available_backends()}")
else:
arg_names = ["nproc_per_node", "nnodes", "node_rank", "master_addr", "master_port"]
arg_values = [nproc_per_node, nnodes, node_rank, master_addr, master_port]
for name, value in zip(arg_names, arg_values):
if value is not None:
raise ValueError(f"If backend is None, argument '{name}' should be also None, but given {value}")
self.backend = backend
self._spawn_params = None
self.init_method = init_method
if self.backend is not None:
if nproc_per_node is not None:
self._spawn_params = self._setup_spawn_params(
nproc_per_node, nnodes, node_rank, master_addr, master_port, init_method, **spawn_kwargs
)
# The logger will be setup after the idist.initialize() call
self._logger = None
@staticmethod
def _setup_spawn_params(
nproc_per_node: int,
nnodes: Optional[int] = None,
node_rank: Optional[int] = None,
master_addr: Optional[str] = None,
master_port: Optional[int] = None,
init_method: Optional[str] = None,
**spawn_kwargs: Any,
) -> Dict:
if nproc_per_node < 1:
raise ValueError(f"Argument nproc_per_node should positive, but given {nproc_per_node}")
if nnodes is None:
nnodes = 1
if nnodes < 1:
raise ValueError(f"Argument nnodes should positive, but given {nnodes}")
if node_rank is None:
if nnodes > 1:
raise ValueError("If number of nodes larger than one, arguments node_rank should be given")
node_rank = 0
if node_rank >= nnodes or node_rank < 0:
raise ValueError(f"Argument node_rank should be between 0 and {nnodes - 1}, but given {node_rank}")
if nnodes > 1 and (master_addr is None or master_port is None) and init_method is None:
raise ValueError(
"If number of nodes larger than one, arguments master_addr and master_port or init_method "
f"should be specified, but given master_addr={master_addr}, master_port={master_port} and "
f"init_method={init_method}."
)
params = {
"nproc_per_node": nproc_per_node,
"nnodes": nnodes,
"node_rank": node_rank,
"master_addr": master_addr,
"master_port": master_port,
"init_method": init_method,
}
params.update(spawn_kwargs)
return {k: v for k, v in params.items() if v is not None}
def run(self, func: Callable, *args: Any, **kwargs: Any) -> None:
"""Execute ``func`` with provided arguments in distributed context.
Args:
func: function to execute. First argument of the function should be `local_rank` - local process
index.
args: positional arguments of ``func`` (without `local_rank`).
kwargs: keyword arguments of ``func``.
Examples:
.. code-block:: python
def training(local_rank, config, **kwargs):
# ...
print(idist.get_rank(), ": run with config:", config, "- backend=", idist.backend())
# ...
config = {"key": "value"}
with idist.Parallel(backend=backend) as parallel:
parallel.run(training, config, a=1, b=2)
"""
if self._spawn_params is not None and self.backend is not None:
self._logger.info( # type: ignore[attr-defined]
f"Spawn function '{func}' in {self._spawn_params['nproc_per_node']} processes"
)
idist.spawn(self.backend, func, args=args, kwargs_dict=kwargs, **self._spawn_params)
else:
self._logger.info(f"- Run '{func}' in {idist.get_world_size()} processes") # type: ignore[attr-defined]
local_rank = idist.get_local_rank()
func(local_rank, *args, **kwargs)
self._logger.info("End of run") # type: ignore[attr-defined]
def __enter__(self) -> "Parallel":
if self.backend is not None and self._spawn_params is None:
idist.initialize(self.backend, init_method=self.init_method)
# The logger can be setup from now since idist.initialize() has been called (if needed)
self._logger = setup_logger(__name__ + "." + self.__class__.__name__) # type: ignore[assignment]
if self.backend is not None:
if self._spawn_params is None:
self._logger.info( # type: ignore[attr-defined]
f"Initialized processing group with backend: '{self.backend}'"
)
else:
self._logger.info( # type: ignore[attr-defined]
f"Initialized distributed launcher with backend: '{self.backend}'"
)
msg = "\n\t".join([f"{k}: {v}" for k, v in self._spawn_params.items() if v is not None])
self._logger.info(f"- Parameters to spawn processes: \n\t{msg}") # type: ignore[attr-defined]
return self
def __exit__(self, *args: Any, **kwargs: Any) -> None:
if (self.backend is not None) and self._spawn_params is None:
self._logger.info( # type: ignore[attr-defined]
f"Finalized processing group with backend: '{self.backend}'"
)
idist.finalize()
|