File: engine.py

package info (click to toggle)
pytorch-ignite 0.5.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,712 kB
  • sloc: python: 46,874; sh: 376; makefile: 27
file content (1277 lines) | stat: -rw-r--r-- 54,726 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
import functools
import logging
import time
import warnings
import weakref
from collections import defaultdict, OrderedDict
from collections.abc import Mapping
from typing import Any, Callable, Dict, Generator, Iterable, Iterator, List, Optional, Tuple, Union

from torch.utils.data import DataLoader

from ignite.base import Serializable
from ignite.engine.events import CallableEventWithFilter, EventEnum, Events, EventsList, RemovableEventHandle, State
from ignite.engine.utils import _check_signature, _to_hours_mins_secs

__all__ = ["Engine"]


class Engine(Serializable):
    """Runs a given ``process_function`` over each batch of a dataset, emitting events as it goes.

    Args:
        process_function: A function receiving a handle to the engine and the current batch
            in each iteration, and returns data to be stored in the engine's state.

    Attributes:
        state: object that is used to pass internal and user-defined state between event handlers.
            It is created with the engine and its attributes (e.g. ``state.iteration``, ``state.epoch`` etc) are reset
            on every :meth:`~ignite.engine.engine.Engine.run`.
        last_event_name: last event name triggered by the engine.

    Note:
        :class:`~ignite.engine.engine.Engine` implementation has changed in v0.4.10 with "interrupt/resume" feature.
        Engine may behave differently on certain corner cases compared to the one from v0.4.9 and before.
        In such case, you can set ``Engine.interrupt_resume_enabled = False`` to restore previous behaviour.

    Examples:
        Create a basic trainer

        .. code-block:: python

            model = ...
            model = model.cuda()
            optimized = ...
            criterion = ...

            def train_step(engine, batch):
                model.train()
                inputs, targets = batch[0].cuda(), batch[1].cuda()
                optimizer.zero_grad()
                outputs = model(inputs)
                loss = criterion(outputs, targets)
                loss.backward()
                optimizer.step()
                return loss.item()

            trainer = Engine(update_model)

            @trainer.on(Events.ITERATION_COMPLETED(every=100))
            def log_training(engine):
                batch_loss = engine.state.output
                lr = optimizer.param_groups[0]['lr']
                e = engine.state.epoch
                n = engine.state.max_epochs
                i = engine.state.iteration
                print(f"Epoch {e}/{n} : {i} - batch loss: {batch_loss}, lr: {lr}")

            trainer.run(data_loader, max_epochs=5)

            > Epoch 1/5 : 100 - batch loss: 0.10874069479016124, lr: 0.01
            > ...
            > Epoch 2/5 : 1700 - batch loss: 0.4217900575859437, lr: 0.01

        Create a basic evaluator to compute metrics

        .. code-block:: python

            from ignite.metrics import Accuracy

            def predict_on_batch(engine, batch)
                model.eval()
                with torch.no_grad():
                    x, y = prepare_batch(batch, device=device, non_blocking=non_blocking)
                    y_pred = model(x)

                return y_pred, y

            evaluator = Engine(predict_on_batch)
            Accuracy().attach(evaluator, "val_acc")
            evaluator.run(val_dataloader)

        Compute image mean/std on training dataset

        .. code-block:: python

            from ignite.metrics import Average

            def compute_mean_std(engine, batch):
                b, c, *_ = batch['image'].shape
                data = batch['image'].reshape(b, c, -1).to(dtype=torch.float64)
                mean = torch.mean(data, dim=-1).sum(dim=0)
                mean2 = torch.mean(data ** 2, dim=-1).sum(dim=0)
                return {"mean": mean, "mean^2": mean2}

            compute_engine = Engine(compute_mean_std)
            img_mean = Average(output_transform=lambda output: output['mean'])
            img_mean.attach(compute_engine, 'mean')
            img_mean2 = Average(output_transform=lambda output: output['mean^2'])
            img_mean2.attach(compute_engine, 'mean2')
            state = compute_engine.run(train_loader)
            state.metrics['std'] = torch.sqrt(state.metrics['mean2'] - state.metrics['mean'] ** 2)
            mean = state.metrics['mean'].tolist()
            std = state.metrics['std'].tolist()

        Resume engine's run from a state. User can load a `state_dict` and run engine starting from loaded state :

        .. code-block:: python

            # Restore from an epoch
            state_dict = {"epoch": 3, "max_epochs": 100, "epoch_length": len(data_loader)}
            # or an iteration
            # state_dict = {"iteration": 500, "max_epochs": 100, "epoch_length": len(data_loader)}

            trainer = Engine(...)
            trainer.load_state_dict(state_dict)
            trainer.run(data)

    """

    _state_dict_all_req_keys = ("epoch_length", "max_epochs")
    _state_dict_one_of_opt_keys = ("iteration", "epoch")

    # Flag to disable engine._internal_run as generator feature for BC
    interrupt_resume_enabled = True

    def __init__(self, process_function: Callable[["Engine", Any], Any]):
        self._event_handlers: Dict[Any, List] = defaultdict(list)
        self.logger = logging.getLogger(__name__ + "." + self.__class__.__name__)
        self._process_function = process_function
        self.last_event_name: Optional[Events] = None
        self.should_terminate = False
        self.should_terminate_single_epoch = False
        self.should_interrupt = False
        self.state = State()
        self._state_dict_user_keys: List[str] = []
        self._allowed_events: List[EventEnum] = []

        self._dataloader_iter: Optional[Iterator[Any]] = None
        self._init_iter: Optional[int] = None

        self.register_events(*Events)

        if self._process_function is None:
            raise ValueError("Engine must be given a processing function in order to run.")

        _check_signature(process_function, "process_function", self, None)

        # generator provided by self._internal_run_as_gen
        self._internal_run_generator: Optional[Generator[Any, None, State]] = None

    def register_events(
        self, *event_names: Union[List[str], List[EventEnum]], event_to_attr: Optional[dict] = None
    ) -> None:
        """Add events that can be fired.

        Registering an event will let the user trigger these events at any point.
        This opens the door to make the :meth:`~ignite.engine.engine.Engine.run` loop even more
        configurable.

        By default, the events from :class:`~ignite.engine.events.Events` are registered.

        Args:
            event_names: Defines the name of the event being supported. New events can be a str
                or an object derived from :class:`~ignite.engine.events.EventEnum`. See example below.
            event_to_attr: A dictionary to map an event to a state attribute.

        Examples:
            .. code-block:: python

                from ignite.engine import Engine, Events, EventEnum

                class CustomEvents(EventEnum):
                    FOO_EVENT = "foo_event"
                    BAR_EVENT = "bar_event"

                def process_function(e, batch):
                    # ...
                    trainer.fire_event("bwd_event")
                    loss.backward()
                    # ...
                    trainer.fire_event("opt_event")
                    optimizer.step()

                trainer = Engine(process_function)
                trainer.register_events(*CustomEvents)
                trainer.register_events("bwd_event", "opt_event")

                @trainer.on(Events.EPOCH_COMPLETED)
                def trigger_custom_event():
                    if required(...):
                        trainer.fire_event(CustomEvents.FOO_EVENT)
                    else:
                        trainer.fire_event(CustomEvents.BAR_EVENT)

                @trainer.on(CustomEvents.FOO_EVENT)
                def do_foo_op():
                    # ...

                @trainer.on(CustomEvents.BAR_EVENT)
                def do_bar_op():
                    # ...

            Example with State Attribute:

            .. code-block:: python

                from enum import Enum
                from ignite.engine import Engine, EventEnum

                class TBPTT_Events(EventEnum):
                    TIME_ITERATION_STARTED = "time_iteration_started"
                    TIME_ITERATION_COMPLETED = "time_iteration_completed"

                TBPTT_event_to_attr = {
                    TBPTT_Events.TIME_ITERATION_STARTED: 'time_iteration',
                    TBPTT_Events.TIME_ITERATION_COMPLETED: 'time_iteration'
                }

                engine = Engine(process_function)
                engine.register_events(*TBPTT_Events, event_to_attr=TBPTT_event_to_attr)
                engine.run(data)
                # engine.state contains an attribute time_iteration, which can be accessed
                # using engine.state.time_iteration
        """
        if not (event_to_attr is None or isinstance(event_to_attr, dict)):
            raise ValueError(f"Expected event_to_attr to be dictionary. Got {type(event_to_attr)}.")

        for index, e in enumerate(event_names):
            if not isinstance(e, (str, EventEnum)):
                raise TypeError(f"Value at {index} of event_names should be a str or EventEnum, but given {e}")
            self._allowed_events.append(e)
            if event_to_attr and e in event_to_attr:
                State.event_to_attr[e] = event_to_attr[e]
        # we need to update state attributes associated with new custom events
        self.state._update_attrs()

    def _handler_wrapper(self, handler: Callable, event_name: Any, event_filter: Callable) -> Callable:
        # signature of the following wrapper will be inspected during registering to check if engine is necessary
        # we have to build a wrapper with relevant signature : solution is functools.wraps
        @functools.wraps(handler)
        def wrapper(*args: Any, **kwargs: Any) -> Any:
            event = self.state.get_event_attrib_value(event_name)
            if event_filter(self, event):
                return handler(*args, **kwargs)

        # setup input handler as parent to make has_event_handler work
        setattr(wrapper, "_parent", weakref.ref(handler))
        return wrapper

    def _assert_allowed_event(self, event_name: Any) -> None:
        if event_name not in self._allowed_events:
            self.logger.error(f"attempt to add event handler to an invalid event {event_name}")
            raise ValueError(f"Event {event_name} is not a valid event for this {self.__class__.__name__}.")

    def add_event_handler(self, event_name: Any, handler: Callable, *args: Any, **kwargs: Any) -> RemovableEventHandle:
        """Add an event handler to be executed when the specified event is fired.

        Args:
            event_name: An event or a list of events to attach the handler. Valid events are
                from :class:`~ignite.engine.events.Events` or any ``event_name`` added by
                :meth:`~ignite.engine.engine.Engine.register_events`.
            handler: the callable event handler that should be invoked. No restrictions on its signature.
                The first argument can be optionally `engine`, the :class:`~ignite.engine.engine.Engine` object,
                handler is bound to.
            args: optional args to be passed to ``handler``.
            kwargs: optional keyword args to be passed to ``handler``.

        Returns:
            :class:`~ignite.engine.events.RemovableEventHandle`, which can be used to remove the handler.

        Note:
            Note that other arguments can be passed to the handler in addition to the `*args` and  `**kwargs`
            passed here, for example during :attr:`~ignite.engine.events.Events.EXCEPTION_RAISED`.

        Examples:
            .. code-block:: python

                engine = Engine(process_function)

                def print_epoch(engine):
                    print(f"Epoch: {engine.state.epoch}")

                engine.add_event_handler(Events.EPOCH_COMPLETED, print_epoch)

                events_list = Events.EPOCH_COMPLETED | Events.COMPLETED

                def execute_something():
                    # do some thing not related to engine
                    pass

                engine.add_event_handler(events_list, execute_something)

        Note:
            Since v0.3.0, Events become more flexible and allow to pass an event filter to the Engine.
            See :class:`~ignite.engine.events.Events` for more details.

        """
        if isinstance(event_name, EventsList):
            for e in event_name:
                self.add_event_handler(e, handler, *args, **kwargs)
            return RemovableEventHandle(event_name, handler, self)
        if isinstance(event_name, CallableEventWithFilter) and event_name.filter is not None:
            event_filter = event_name.filter
            handler = self._handler_wrapper(handler, event_name, event_filter)

        self._assert_allowed_event(event_name)

        event_args: Tuple[Any, ...] = ()
        if event_name == Events.EXCEPTION_RAISED:
            event_args += (Exception(),)
        elif event_name == Events.TERMINATE_SINGLE_EPOCH:
            event_args += (0,)

        try:
            _check_signature(handler, "handler", self, *(event_args + args), **kwargs)
            self._event_handlers[event_name].append((handler, (self,) + args, kwargs))
        except ValueError:
            _check_signature(handler, "handler", *(event_args + args), **kwargs)
            self._event_handlers[event_name].append((handler, args, kwargs))
        self.logger.debug(f"Added handler for event {event_name}")

        return RemovableEventHandle(event_name, handler, self)

    def has_event_handler(self, handler: Callable, event_name: Optional[Any] = None) -> bool:
        """Check if the specified event has the specified handler.

        Args:
            handler: the callable event handler.
            event_name: The event the handler attached to. Set this
                to ``None`` to search all events.
        """
        if event_name is not None:
            if event_name not in self._event_handlers:
                return False
            events: Union[List[Any], Dict[Any, List]] = [event_name]
        else:
            events = self._event_handlers
        for e in events:
            for h, _, _ in self._event_handlers[e]:
                if self._compare_handlers(handler, h):
                    return True
        return False

    @staticmethod
    def _compare_handlers(user_handler: Callable, registered_handler: Callable) -> bool:
        if hasattr(registered_handler, "_parent"):
            registered_handler = registered_handler._parent()
        return registered_handler == user_handler

    def remove_event_handler(self, handler: Callable, event_name: Any) -> None:
        """Remove event handler `handler` from registered handlers of the engine

        Args:
            handler: the callable event handler that should be removed
            event_name: The event the handler attached to.

        """
        if event_name not in self._event_handlers:
            raise ValueError(f"Input event name '{event_name}' does not exist")

        new_event_handlers = [
            (h, args, kwargs)
            for h, args, kwargs in self._event_handlers[event_name]
            if not self._compare_handlers(handler, h)
        ]
        if len(new_event_handlers) == len(self._event_handlers[event_name]):
            raise ValueError(f"Input handler '{handler}' is not found among registered event handlers")
        self._event_handlers[event_name] = new_event_handlers

    def on(self, event_name: Any, *args: Any, **kwargs: Any) -> Callable:
        """Decorator shortcut for :meth:`~ignite.engine.engine.Engine.add_event_handler`.

        Args:
            event_name: An event to attach the handler to. Valid events are from :class:`~ignite.engine.events.Events`
                or any ``event_name`` added by :meth:`~ignite.engine.engine.Engine.register_events`.
            args: optional args to be passed to `handler`.
            kwargs: optional keyword args to be passed to `handler`.

        Examples:
            .. code-block:: python

                engine = Engine(process_function)

                @engine.on(Events.EPOCH_COMPLETED)
                def print_epoch():
                    print(f"Epoch: {engine.state.epoch}")

                @engine.on(Events.EPOCH_COMPLETED | Events.COMPLETED)
                def execute_something():
                    # do some thing not related to engine
                    pass
        """

        def decorator(f: Callable) -> Callable:
            self.add_event_handler(event_name, f, *args, **kwargs)
            return f

        return decorator

    def _fire_event(self, event_name: Any, *event_args: Any, **event_kwargs: Any) -> None:
        """Execute all the handlers associated with given event.

        This method executes all handlers associated with the event
        `event_name`. Optional positional and keyword arguments can be used to
        pass arguments to **all** handlers added with this event. These
        arguments updates arguments passed using :meth:`~ignite.engine.engine.Engine.add_event_handler`.

        Args:
            event_name: event for which the handlers should be executed. Valid
                events are from :class:`~ignite.engine.events.Events` or any `event_name` added by
                :meth:`~ignite.engine.engine.Engine.register_events`.
            *event_args: optional args to be passed to all handlers.
            **event_kwargs: optional keyword args to be passed to all handlers.

        """
        self.logger.debug(f"{self.state.epoch} | {self.state.iteration}, Firing handlers for event {event_name}")
        self.last_event_name = event_name
        for func, args, kwargs in self._event_handlers[event_name]:
            kwargs.update(event_kwargs)
            first, others = ((args[0],), args[1:]) if (args and args[0] == self) else ((), args)
            func(*first, *(event_args + others), **kwargs)

    def fire_event(self, event_name: Any) -> None:
        """Execute all the handlers associated with given event.

        This method executes all handlers associated with the event
        `event_name`. This is the method used in :meth:`~ignite.engine.engine.Engine.run` to call the
        core events found in :class:`~ignite.engine.events.Events`.

        Custom events can be fired if they have been registered before with
        :meth:`~ignite.engine.engine.Engine.register_events`. The engine `state` attribute should be used
        to exchange "dynamic" data among `process_function` and handlers.

        This method is called automatically for core events. If no custom
        events are used in the engine, there is no need for the user to call
        the method.

        Args:
            event_name: event for which the handlers should be executed. Valid
                events are from :class:`~ignite.engine.events.Events` or any `event_name` added by
                :meth:`~ignite.engine.engine.Engine.register_events`.

        """
        self._assert_allowed_event(event_name)
        return self._fire_event(event_name)

    def interrupt(self) -> None:
        """Sends interrupt signal to the engine, so that it interrupts the run after
        the current iteration. The run can be resumed by calling
        :meth:`~ignite.engine.engine.Engine.run`. Data iteration will continue from the interrupted state.

        Examples:
            .. testcode::

                from ignite.engine import Engine, Events

                data = range(10)
                max_epochs = 3

                def check_input_data(e, b):
                    print(f"Epoch {engine.state.epoch}, Iter {engine.state.iteration} | data={b}")
                    i = (e.state.iteration - 1) % len(data)
                    assert b == data[i]

                engine = Engine(check_input_data)

                @engine.on(Events.ITERATION_COMPLETED(every=11))
                def call_interrupt():
                    engine.interrupt()

                print("Start engine run with interruptions:")
                state = engine.run(data, max_epochs=max_epochs)
                print("1 Engine run is interrupted at ", state.epoch, state.iteration)
                state = engine.run(data, max_epochs=max_epochs)
                print("2 Engine run is interrupted at ", state.epoch, state.iteration)
                state = engine.run(data, max_epochs=max_epochs)
                print("3 Engine ended the run at ", state.epoch, state.iteration)

            .. dropdown:: Output

                .. testoutput::

                    Start engine run with interruptions:
                    Epoch 1, Iter 1 | data=0
                    Epoch 1, Iter 2 | data=1
                    Epoch 1, Iter 3 | data=2
                    Epoch 1, Iter 4 | data=3
                    Epoch 1, Iter 5 | data=4
                    Epoch 1, Iter 6 | data=5
                    Epoch 1, Iter 7 | data=6
                    Epoch 1, Iter 8 | data=7
                    Epoch 1, Iter 9 | data=8
                    Epoch 1, Iter 10 | data=9
                    Epoch 2, Iter 11 | data=0
                    1 Engine run is interrupted at  2 11
                    Epoch 2, Iter 12 | data=1
                    Epoch 2, Iter 13 | data=2
                    Epoch 2, Iter 14 | data=3
                    Epoch 2, Iter 15 | data=4
                    Epoch 2, Iter 16 | data=5
                    Epoch 2, Iter 17 | data=6
                    Epoch 2, Iter 18 | data=7
                    Epoch 2, Iter 19 | data=8
                    Epoch 2, Iter 20 | data=9
                    Epoch 3, Iter 21 | data=0
                    Epoch 3, Iter 22 | data=1
                    2 Engine run is interrupted at  3 22
                    Epoch 3, Iter 23 | data=2
                    Epoch 3, Iter 24 | data=3
                    Epoch 3, Iter 25 | data=4
                    Epoch 3, Iter 26 | data=5
                    Epoch 3, Iter 27 | data=6
                    Epoch 3, Iter 28 | data=7
                    Epoch 3, Iter 29 | data=8
                    Epoch 3, Iter 30 | data=9
                    3 Engine ended the run at  3 30


        .. versionadded:: 0.4.10
        """
        if not self.interrupt_resume_enabled:
            raise RuntimeError(
                "Engine 'interrupt/resume' feature is disabled. "
                "Please, set Engine.interrupt_resume_enabled=True to enable it"
            )

        self.logger.info("interrupt signaled. Engine will interrupt the run after current iteration is finished.")
        self.should_interrupt = True

    def terminate(self) -> None:
        """Sends terminate signal to the engine, so that it terminates completely the run. The run is
        terminated after the event on which ``terminate`` method was called. The following events are triggered:

        - ...
        - Terminating event
        - :attr:`~ignite.engine.events.Events.TERMINATE`
        - :attr:`~ignite.engine.events.Events.COMPLETED`


        Examples:
            .. testcode::

                from ignite.engine import Engine, Events

                def func(engine, batch):
                    print(engine.state.epoch, engine.state.iteration, " | ", batch)

                max_epochs = 4
                data = range(10)
                engine = Engine(func)

                @engine.on(Events.ITERATION_COMPLETED(once=14))
                def terminate():
                    print(f"-> terminate at iteration: {engine.state.iteration}")
                    engine.terminate()

                print("Start engine run:")
                state = engine.run(data, max_epochs=max_epochs)
                print("1 Engine run is terminated at ", state.epoch, state.iteration)
                state = engine.run(data, max_epochs=max_epochs)
                print("2 Engine ended the run at ", state.epoch, state.iteration)

            .. dropdown:: Output

                .. testoutput::

                    Start engine run:
                    1 1  |  0
                    1 2  |  1
                    1 3  |  2
                    1 4  |  3
                    1 5  |  4
                    1 6  |  5
                    1 7  |  6
                    1 8  |  7
                    1 9  |  8
                    1 10  |  9
                    2 11  |  0
                    2 12  |  1
                    2 13  |  2
                    2 14  |  3
                    -> terminate at iteration: 14
                    1 Engine run is terminated at  2 14
                    3 15  |  0
                    3 16  |  1
                    3 17  |  2
                    3 18  |  3
                    3 19  |  4
                    3 20  |  5
                    3 21  |  6
                    3 22  |  7
                    3 23  |  8
                    3 24  |  9
                    4 25  |  0
                    4 26  |  1
                    4 27  |  2
                    4 28  |  3
                    4 29  |  4
                    4 30  |  5
                    4 31  |  6
                    4 32  |  7
                    4 33  |  8
                    4 34  |  9
                    2 Engine ended the run at  4 34

        .. versionchanged:: 0.4.10
            Behaviour changed, for details see https://github.com/pytorch/ignite/issues/2669

        """
        self.logger.info("Terminate signaled. Engine will stop after current iteration is finished.")
        self.should_terminate = True

    def terminate_epoch(self) -> None:
        """Sends terminate signal to the engine, so that it terminates the current epoch. The run
        continues from the next epoch. The following events are triggered:

        - ...
        - Event on which ``terminate_epoch`` method is called
        - :attr:`~ignite.engine.events.Events.TERMINATE_SINGLE_EPOCH`
        - :attr:`~ignite.engine.events.Events.EPOCH_COMPLETED`
        - :attr:`~ignite.engine.events.Events.EPOCH_STARTED`
        - ...
        """
        self.logger.info(
            "Terminate current epoch is signaled. "
            "Current epoch iteration will stop after current iteration is finished."
        )
        self.should_terminate_single_epoch = True

    def _handle_exception(self, e: BaseException) -> None:
        if Events.EXCEPTION_RAISED in self._event_handlers:
            self._fire_event(Events.EXCEPTION_RAISED, e)
        else:
            raise e

    @property
    def state_dict_user_keys(self) -> List:
        return self._state_dict_user_keys

    def state_dict(self) -> OrderedDict:
        """Returns a dictionary containing engine's state: "epoch_length", "max_epochs" and "iteration" and
        other state values defined by `engine.state_dict_user_keys`

        .. code-block:: python

            engine = Engine(...)
            engine.state_dict_user_keys.append("alpha")
            engine.state_dict_user_keys.append("beta")
            ...

            @engine.on(Events.STARTED)
            def init_user_value(_):
                 engine.state.alpha = 0.1
                 engine.state.beta = 1.0

            @engine.on(Events.COMPLETED)
            def save_engine(_):
                state_dict = engine.state_dict()
                assert "alpha" in state_dict and "beta" in state_dict
                torch.save(state_dict, "/tmp/engine.pt")

        Returns:
            OrderedDict:
                a dictionary containing engine's state

        """
        keys: Tuple[str, ...] = self._state_dict_all_req_keys + (self._state_dict_one_of_opt_keys[0],)
        keys += tuple(self._state_dict_user_keys)
        return OrderedDict([(k, getattr(self.state, k)) for k in keys])

    def load_state_dict(self, state_dict: Mapping) -> None:
        """Setups engine from `state_dict`.

        State dictionary should contain keys: `iteration` or `epoch`, `max_epochs` and `epoch_length`.
        If `engine.state_dict_user_keys` contains keys, they should be also present in the state dictionary.
        Iteration and epoch values are 0-based: the first iteration or epoch is zero.

        This method does not remove any custom attributes added by user.

        Args:
            state_dict: a dict with parameters

        .. code-block:: python

            # Restore from the 4rd epoch
            state_dict = {"epoch": 3, "max_epochs": 100, "epoch_length": len(data_loader)}
            # or 500th iteration
            # state_dict = {"iteration": 499, "max_epochs": 100, "epoch_length": len(data_loader)}

            trainer = Engine(...)
            trainer.load_state_dict(state_dict)
            trainer.run(data)

        """
        super(Engine, self).load_state_dict(state_dict)

        for k in self._state_dict_user_keys:
            if k not in state_dict:
                raise ValueError(
                    f"Required user state attribute '{k}' is absent in provided state_dict '{state_dict.keys()}'"
                )
        self.state.max_epochs = state_dict["max_epochs"]
        self.state.epoch_length = state_dict["epoch_length"]
        for k in self._state_dict_user_keys:
            setattr(self.state, k, state_dict[k])

        if "iteration" in state_dict:
            self.state.iteration = state_dict["iteration"]
            self.state.epoch = 0
            if self.state.epoch_length is not None:
                self.state.epoch = self.state.iteration // self.state.epoch_length
        elif "epoch" in state_dict:
            self.state.epoch = state_dict["epoch"]
            if self.state.epoch_length is None:
                raise ValueError(
                    "If epoch is provided in the state dict, epoch_length should not be None. "
                    f"Input state_dict: {state_dict}"
                )
            self.state.iteration = self.state.epoch_length * self.state.epoch

    @staticmethod
    def _is_done(state: State) -> bool:
        is_done_count = (
            state.epoch_length is not None
            and state.max_epochs is not None
            and state.iteration >= state.epoch_length * state.max_epochs
        )
        is_done_epochs = state.max_epochs is not None and state.epoch >= state.max_epochs
        return is_done_count or is_done_epochs

    def set_data(self, data: Union[Iterable, DataLoader]) -> None:
        """Method to set data. After calling the method the next batch passed to `processing_function` is
        from newly provided data. Please, note that epoch length is not modified.

        Args:
            data: Collection of batches allowing repeated iteration (e.g., list or `DataLoader`).

        Examples:
            User can switch data provider during the training:

            .. code-block:: python

                data1 = ...
                data2 = ...

                switch_iteration = 5000

                def train_step(e, batch):
                    # when iteration <= switch_iteration
                    # batch is from data1
                    # when iteration > switch_iteration
                    # batch is from data2
                    ...

                trainer = Engine(train_step)

                @trainer.on(Events.ITERATION_COMPLETED(once=switch_iteration))
                def switch_dataloader():
                    trainer.set_data(data2)

                trainer.run(data1, max_epochs=100)

        """
        self.state.dataloader = data
        self._dataloader_iter = iter(self.state.dataloader)

    def run(
        self,
        data: Optional[Iterable] = None,
        max_epochs: Optional[int] = None,
        epoch_length: Optional[int] = None,
    ) -> State:
        """Runs the ``process_function`` over the passed data.

        Engine has a state and the following logic is applied in this function:

        - At the first call, new state is defined by `max_epochs`, `epoch_length`, if provided.
          A timer for total and per-epoch time is initialized when Events.STARTED is handled.
        - If state is already defined such that there are iterations to run until `max_epochs` and no input arguments
          provided, state is kept and used in the function.
        - If state is defined and engine is "done" (no iterations to run until `max_epochs`), a new state is defined.
        - If state is defined, engine is NOT "done", then input arguments if provided override defined state.

        Args:
            data: Collection of batches allowing repeated iteration (e.g., list or `DataLoader`). If not provided, then
                ``epoch_length`` is required and ``batch`` argument of ``process_function`` will be ``None``.
            max_epochs: Max epochs to run for (default: None).
                If a new state should be created (first run or run again from ended engine), it's default value is 1.
                If run is resuming from a state, provided `max_epochs` will be taken into account and should be larger
                than `engine.state.max_epochs`.
            epoch_length: Number of iterations to count as one epoch. By default, it can be set as
                `len(data)`. If `data` is an iterator and `epoch_length` is not set, then it will be automatically
                determined as the iteration on which data iterator raises `StopIteration`.
                This argument should not change if run is resuming from a state.
        Returns:
            State: output state.

        Note:
            User can dynamically preprocess input batch at :attr:`~ignite.engine.events.Events.ITERATION_STARTED` and
            store output batch in `engine.state.batch`. Latter is passed as usually to `process_function` as argument:

            .. code-block:: python

                trainer = ...

                @trainer.on(Events.ITERATION_STARTED)
                def switch_batch(engine):
                    engine.state.batch = preprocess_batch(engine.state.batch)

            Restart the training from the beginning. User can reset `max_epochs = None`:

            .. code-block:: python

                # ...
                trainer.run(train_loader, max_epochs=5)

                # Reset model weights etc. and restart the training
                trainer.state.max_epochs = None
                trainer.run(train_loader, max_epochs=2)

        """
        if data is not None and not isinstance(data, Iterable):
            raise TypeError("Argument data should be iterable")

        if self.state.max_epochs is not None:
            # Check and apply overridden parameters
            if max_epochs is not None:
                if max_epochs < self.state.epoch:
                    raise ValueError(
                        "Argument max_epochs should be greater than or equal to the start "
                        f"epoch defined in the state: {max_epochs} vs {self.state.epoch}. "
                        "Please, set engine.state.max_epochs = None "
                        "before calling engine.run() in order to restart the training from the beginning."
                    )
                self.state.max_epochs = max_epochs
            if epoch_length is not None:
                if epoch_length != self.state.epoch_length:
                    raise ValueError(
                        "Argument epoch_length should be same as in the state, "
                        f"but given {epoch_length} vs {self.state.epoch_length}"
                    )

        if self.state.max_epochs is None or (self._is_done(self.state) and self._internal_run_generator is None):
            # Create new state
            if max_epochs is None:
                max_epochs = 1
            if epoch_length is None:
                if data is None:
                    raise ValueError("epoch_length should be provided if data is None")

                epoch_length = self._get_data_length(data)
                if epoch_length is not None and epoch_length < 1:
                    raise ValueError("Input data has zero size. Please provide non-empty data")

            self.state.iteration = 0
            self.state.epoch = 0
            self.state.max_epochs = max_epochs
            self.state.epoch_length = epoch_length
            # Reset generator if previously used
            self._internal_run_generator = None
            self.logger.info(f"Engine run starting with max_epochs={max_epochs}.")
        else:
            self.logger.info(
                f"Engine run resuming from iteration {self.state.iteration}, "
                f"epoch {self.state.epoch} until {self.state.max_epochs} epochs"
            )
            if self.state.epoch_length is None and data is None:
                raise ValueError("epoch_length should be provided if data is None")

            if self.should_terminate:
                # If engine was terminated and now is resuming from terminated state
                # we need to initialize iter_counter as 0
                self._init_iter = 0

        if self._dataloader_iter is None:
            self.state.dataloader = data

        if self.interrupt_resume_enabled:
            return self._internal_run()
        else:
            return self._internal_run_legacy()

    @staticmethod
    def _init_timers(state: State) -> None:
        state.times[Events.EPOCH_COMPLETED.name] = 0.0
        state.times[Events.COMPLETED.name] = 0.0

    def _get_data_length(self, data: Iterable) -> Optional[int]:
        try:
            if hasattr(data, "__len__"):
                return len(data)  # type: ignore[arg-type]
        except TypeError:
            # _InfiniteConstantSampler can raise a TypeError on DataLoader length of a IterableDataset
            pass
        return None

    def _setup_dataloader_iter(self) -> None:
        if self.state.dataloader is None:
            if self.state.epoch_length is None:
                raise RuntimeError(
                    "Internal error, self.state.epoch_length is None. "
                    "Please, file an issue if you encounter this error."
                )
            self._dataloader_iter = _get_none_data_iter(self.state.epoch_length)
        else:
            self._dataloader_iter = iter(self.state.dataloader)

    def _setup_engine(self) -> None:
        self._setup_dataloader_iter()

        if self._init_iter is None:
            iteration = self.state.iteration
            # Below we define initial counter value for _run_once_on_dataset to measure a single epoch
            if self.state.epoch_length is not None:
                iteration %= self.state.epoch_length
            self._init_iter = iteration

    def _internal_run(self) -> State:
        if self._internal_run_generator is None:
            self._internal_run_generator = self._internal_run_as_gen()
        try:
            return next(self._internal_run_generator)
        except StopIteration as out:
            self._internal_run_generator = None
            return out.value

    def _internal_run_as_gen(self) -> Generator[Any, None, State]:
        self.should_terminate = self.should_terminate_single_epoch = self.should_interrupt = False
        self._init_timers(self.state)
        try:
            try:
                start_time = time.time()
                self._fire_event(Events.STARTED)
                yield from self._maybe_terminate_or_interrupt()

                while not self._is_done(self.state) and not self.should_terminate:
                    self.state.epoch += 1
                    handlers_start_time = time.time()
                    self._fire_event(Events.EPOCH_STARTED)
                    epoch_time_taken = time.time() - handlers_start_time
                    yield from self._maybe_terminate_or_interrupt()

                    if self._dataloader_iter is None:
                        self._setup_engine()

                    epoch_time_taken += yield from self._run_once_on_dataset_as_gen()

                    # time is available for handlers but must be updated after fire
                    self.state.times[Events.EPOCH_COMPLETED.name] = epoch_time_taken

                    handlers_start_time = time.time()
                    self._fire_event(Events.EPOCH_COMPLETED)
                    epoch_time_taken += time.time() - handlers_start_time
                    # update time wrt handlers
                    self.state.times[Events.EPOCH_COMPLETED.name] = epoch_time_taken
                    yield from self._maybe_terminate_or_interrupt()

                    hours, mins, secs = _to_hours_mins_secs(epoch_time_taken)
                    self.logger.info(
                        f"Epoch[{self.state.epoch}] Complete. Time taken: {hours:02d}:{mins:02d}:{secs:06.3f}"
                    )

            except _EngineTerminateException:
                self._fire_event(Events.TERMINATE)

            time_taken = time.time() - start_time
            # time is available for handlers but must be updated after fire
            self.state.times[Events.COMPLETED.name] = time_taken
            handlers_start_time = time.time()
            self._fire_event(Events.COMPLETED)
            time_taken += time.time() - handlers_start_time
            # update time wrt handlers
            self.state.times[Events.COMPLETED.name] = time_taken
            hours, mins, secs = _to_hours_mins_secs(time_taken)
            self.logger.info(f"Engine run complete. Time taken: {hours:02d}:{mins:02d}:{secs:06.3f}")

        except BaseException as e:
            self._dataloader_iter = None
            self.logger.error(f"Engine run is terminating due to exception: {e}")
            self._handle_exception(e)

        self._dataloader_iter = None
        return self.state

    def _maybe_terminate_or_interrupt(self) -> Generator:
        if self.should_terminate:
            raise _EngineTerminateException()

        if self.should_terminate_single_epoch:
            raise _EngineTerminateSingleEpochException()

        if self.should_interrupt:
            self._fire_event(Events.INTERRUPT)
            self.should_interrupt = False
            yield self.state

    def _run_once_on_dataset_as_gen(self) -> Generator[State, None, float]:
        start_time = time.time()

        # We need to setup iter_counter > 0 if we resume from an iteration
        iter_counter = 0 if self._init_iter is None else self._init_iter
        self._init_iter = None
        should_exit = False
        try:
            if self._dataloader_iter is None:
                raise RuntimeError(
                    "Internal error, self._dataloader_iter is None. "
                    "Please, file an issue if you encounter this error."
                )

            while True:
                self.state.batch = self.state.output = None

                try:
                    # Avoid Events.GET_BATCH_STARTED triggered twice when data iter is restarted
                    if self.last_event_name != Events.DATALOADER_STOP_ITERATION:
                        # We should not trigger GET_BATCH_STARTED, GET_BATCH_COMPLETED, DATALOADER_STOP_ITERATION events
                        # if no data was provided to engine.run(data=None, ...)
                        if self.state.dataloader is not None:
                            self._fire_event(Events.GET_BATCH_STARTED)
                            yield from self._maybe_terminate_or_interrupt()

                    self.state.batch = next(self._dataloader_iter)

                    # We should not trigger GET_BATCH_STARTED, GET_BATCH_COMPLETED, DATALOADER_STOP_ITERATION events
                    # if no data was provided to engine.run(data=None, ...)
                    if self.state.dataloader is not None:
                        self._fire_event(Events.GET_BATCH_COMPLETED)
                        yield from self._maybe_terminate_or_interrupt()

                    iter_counter += 1
                    should_exit = False
                except StopIteration:
                    # Define self.state.epoch_length if it is not yet set
                    if self.state.epoch_length is None:
                        # Define epoch length and stop the epoch
                        self.state.epoch_length = iter_counter
                        break

                    # Should exit while loop if we can not iterate
                    if should_exit:
                        if not self._is_done(self.state) and self.state.max_epochs is not None:
                            total_iters = self.state.epoch_length * self.state.max_epochs

                            warnings.warn(
                                "Data iterator can not provide data anymore but required total number of "
                                "iterations to run is not reached. "
                                f"Current iteration: {self.state.iteration} vs Total iterations to run : {total_iters}"
                            )
                        break

                    # We should not trigger GET_BATCH_STARTED, GET_BATCH_COMPLETED, DATALOADER_STOP_ITERATION events
                    # if no data was provided to engine.run(data=None, ...)
                    if self.state.dataloader is not None:
                        self._fire_event(Events.DATALOADER_STOP_ITERATION)
                        yield from self._maybe_terminate_or_interrupt()

                    self._setup_dataloader_iter()
                    should_exit = True

                    continue

                self.state.iteration += 1
                self._fire_event(Events.ITERATION_STARTED)
                yield from self._maybe_terminate_or_interrupt()

                self.state.output = self._process_function(self, self.state.batch)
                self._fire_event(Events.ITERATION_COMPLETED)
                yield from self._maybe_terminate_or_interrupt()

                if self.state.epoch_length is not None and iter_counter == self.state.epoch_length:
                    break

        except _EngineTerminateSingleEpochException:
            self._fire_event(Events.TERMINATE_SINGLE_EPOCH, iter_counter=iter_counter)
            self.should_terminate_single_epoch = False
            self._setup_dataloader_iter()

        except _EngineTerminateException as e:
            # we need to reraise this exception such that it is not handled
            # as a general exception by the code below
            raise e

        except Exception as e:
            self.logger.error(f"Current run is terminating due to exception: {e}")
            self._handle_exception(e)

        return time.time() - start_time

    def _maybe_terminate_legacy(self) -> None:
        if self.should_terminate:
            raise _EngineTerminateException()

        if self.should_terminate_single_epoch:
            raise _EngineTerminateSingleEpochException()

    def _internal_run_legacy(self) -> State:
        # internal_run without generator for BC
        self.should_terminate = self.should_terminate_single_epoch = self.should_interrupt = False
        self._init_timers(self.state)
        try:
            try:
                start_time = time.time()
                self._fire_event(Events.STARTED)
                self._maybe_terminate_legacy()

                while not self._is_done(self.state) and not self.should_terminate:
                    self.state.epoch += 1
                    handlers_start_time = time.time()
                    self._fire_event(Events.EPOCH_STARTED)
                    epoch_time_taken = time.time() - handlers_start_time
                    self._maybe_terminate_legacy()

                    if self._dataloader_iter is None:
                        self._setup_engine()

                    epoch_time_taken += self._run_once_on_dataset_legacy()

                    # time is available for handlers but must be updated after fire
                    self.state.times[Events.EPOCH_COMPLETED.name] = epoch_time_taken

                    handlers_start_time = time.time()
                    self._fire_event(Events.EPOCH_COMPLETED)
                    epoch_time_taken += time.time() - handlers_start_time
                    # update time wrt handlers
                    self.state.times[Events.EPOCH_COMPLETED.name] = epoch_time_taken
                    self._maybe_terminate_legacy()

                    hours, mins, secs = _to_hours_mins_secs(epoch_time_taken)
                    self.logger.info(
                        f"Epoch[{self.state.epoch}] Complete. Time taken: {hours:02d}:{mins:02d}:{secs:06.3f}"
                    )

            except _EngineTerminateException:
                self._fire_event(Events.TERMINATE)

            time_taken = time.time() - start_time
            # time is available for handlers but must be updated after fire
            self.state.times[Events.COMPLETED.name] = time_taken
            handlers_start_time = time.time()
            self._fire_event(Events.COMPLETED)
            time_taken += time.time() - handlers_start_time
            # update time wrt handlers
            self.state.times[Events.COMPLETED.name] = time_taken
            hours, mins, secs = _to_hours_mins_secs(time_taken)
            self.logger.info(f"Engine run complete. Time taken: {hours:02d}:{mins:02d}:{secs:06.3f}")

        except BaseException as e:
            self._dataloader_iter = None
            self.logger.error(f"Engine run is terminating due to exception: {e}")
            self._handle_exception(e)

        self._dataloader_iter = None
        return self.state

    def _run_once_on_dataset_legacy(self) -> float:
        start_time = time.time()

        # We need to setup iter_counter > 0 if we resume from an iteration
        iter_counter = 0 if self._init_iter is None else self._init_iter
        self._init_iter = None
        should_exit = False
        try:
            if self._dataloader_iter is None:
                raise RuntimeError(
                    "Internal error, self._dataloader_iter is None. "
                    "Please, file an issue if you encounter this error."
                )

            while True:
                self.state.batch = self.state.output = None
                try:
                    # Avoid Events.GET_BATCH_STARTED triggered twice when data iter is restarted
                    if self.last_event_name != Events.DATALOADER_STOP_ITERATION:
                        # We should not trigger GET_BATCH_STARTED, GET_BATCH_COMPLETED, DATALOADER_STOP_ITERATION events
                        # if no data was provided to engine.run(data=None, ...)
                        if self.state.dataloader is not None:
                            self._fire_event(Events.GET_BATCH_STARTED)
                            self._maybe_terminate_legacy()

                    self.state.batch = next(self._dataloader_iter)
                    # We should not trigger GET_BATCH_STARTED, GET_BATCH_COMPLETED, DATALOADER_STOP_ITERATION events
                    # if no data was provided to engine.run(data=None, ...)
                    if self.state.dataloader is not None:
                        self._fire_event(Events.GET_BATCH_COMPLETED)
                        self._maybe_terminate_legacy()

                    iter_counter += 1
                    should_exit = False
                except StopIteration:
                    # Define self.state.epoch_length if it is not yet set
                    if self.state.epoch_length is None:
                        # Define epoch length and stop the epoch
                        self.state.epoch_length = iter_counter
                        break

                    # Should exit while loop if we can not iterate
                    if should_exit:
                        if not self._is_done(self.state) and self.state.max_epochs is not None:
                            total_iters = self.state.epoch_length * self.state.max_epochs

                            warnings.warn(
                                "Data iterator can not provide data anymore but required total number of "
                                "iterations to run is not reached. "
                                f"Current iteration: {self.state.iteration} vs Total iterations to run : {total_iters}"
                            )
                        break

                    # We should not trigger GET_BATCH_STARTED, GET_BATCH_COMPLETED, DATALOADER_STOP_ITERATION events
                    # if no data was provided to engine.run(data=None, ...)
                    if self.state.dataloader is not None:
                        self._fire_event(Events.DATALOADER_STOP_ITERATION)
                        self._maybe_terminate_legacy()

                    self._setup_dataloader_iter()
                    should_exit = True

                    continue

                self.state.iteration += 1
                self._fire_event(Events.ITERATION_STARTED)
                self._maybe_terminate_legacy()

                self.state.output = self._process_function(self, self.state.batch)
                self._fire_event(Events.ITERATION_COMPLETED)
                self._maybe_terminate_legacy()

                if self.state.epoch_length is not None and iter_counter == self.state.epoch_length:
                    break

        except _EngineTerminateSingleEpochException:
            self._fire_event(Events.TERMINATE_SINGLE_EPOCH, iter_counter=iter_counter)
            self.should_terminate_single_epoch = False
            self._setup_dataloader_iter()

        except _EngineTerminateException as e:
            # we need to reraise this exception such that it is not handled
            # as a general exception by the code below
            raise e

        except Exception as e:
            self.logger.error(f"Current run is terminating due to exception: {e}")
            self._handle_exception(e)

        return time.time() - start_time


def _get_none_data_iter(size: int) -> Iterator:
    # Sized iterator for data as None
    for _ in range(size):
        yield None


class _EngineTerminateSingleEpochException(Exception):
    """
    Exception associated with Terminate Single Epoch event
    """

    pass


class _EngineTerminateException(Exception):
    """
    Exception associated with Terminate event
    """

    pass