1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
|
import functools
import logging
import time
import warnings
import weakref
from collections import defaultdict, OrderedDict
from collections.abc import Mapping
from typing import Any, Callable, Dict, Generator, Iterable, Iterator, List, Optional, Tuple, Union
from torch.utils.data import DataLoader
from ignite.base import Serializable
from ignite.engine.events import CallableEventWithFilter, EventEnum, Events, EventsList, RemovableEventHandle, State
from ignite.engine.utils import _check_signature, _to_hours_mins_secs
__all__ = ["Engine"]
class Engine(Serializable):
"""Runs a given ``process_function`` over each batch of a dataset, emitting events as it goes.
Args:
process_function: A function receiving a handle to the engine and the current batch
in each iteration, and returns data to be stored in the engine's state.
Attributes:
state: object that is used to pass internal and user-defined state between event handlers.
It is created with the engine and its attributes (e.g. ``state.iteration``, ``state.epoch`` etc) are reset
on every :meth:`~ignite.engine.engine.Engine.run`.
last_event_name: last event name triggered by the engine.
Note:
:class:`~ignite.engine.engine.Engine` implementation has changed in v0.4.10 with "interrupt/resume" feature.
Engine may behave differently on certain corner cases compared to the one from v0.4.9 and before.
In such case, you can set ``Engine.interrupt_resume_enabled = False`` to restore previous behaviour.
Examples:
Create a basic trainer
.. code-block:: python
model = ...
model = model.cuda()
optimized = ...
criterion = ...
def train_step(engine, batch):
model.train()
inputs, targets = batch[0].cuda(), batch[1].cuda()
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
return loss.item()
trainer = Engine(update_model)
@trainer.on(Events.ITERATION_COMPLETED(every=100))
def log_training(engine):
batch_loss = engine.state.output
lr = optimizer.param_groups[0]['lr']
e = engine.state.epoch
n = engine.state.max_epochs
i = engine.state.iteration
print(f"Epoch {e}/{n} : {i} - batch loss: {batch_loss}, lr: {lr}")
trainer.run(data_loader, max_epochs=5)
> Epoch 1/5 : 100 - batch loss: 0.10874069479016124, lr: 0.01
> ...
> Epoch 2/5 : 1700 - batch loss: 0.4217900575859437, lr: 0.01
Create a basic evaluator to compute metrics
.. code-block:: python
from ignite.metrics import Accuracy
def predict_on_batch(engine, batch)
model.eval()
with torch.no_grad():
x, y = prepare_batch(batch, device=device, non_blocking=non_blocking)
y_pred = model(x)
return y_pred, y
evaluator = Engine(predict_on_batch)
Accuracy().attach(evaluator, "val_acc")
evaluator.run(val_dataloader)
Compute image mean/std on training dataset
.. code-block:: python
from ignite.metrics import Average
def compute_mean_std(engine, batch):
b, c, *_ = batch['image'].shape
data = batch['image'].reshape(b, c, -1).to(dtype=torch.float64)
mean = torch.mean(data, dim=-1).sum(dim=0)
mean2 = torch.mean(data ** 2, dim=-1).sum(dim=0)
return {"mean": mean, "mean^2": mean2}
compute_engine = Engine(compute_mean_std)
img_mean = Average(output_transform=lambda output: output['mean'])
img_mean.attach(compute_engine, 'mean')
img_mean2 = Average(output_transform=lambda output: output['mean^2'])
img_mean2.attach(compute_engine, 'mean2')
state = compute_engine.run(train_loader)
state.metrics['std'] = torch.sqrt(state.metrics['mean2'] - state.metrics['mean'] ** 2)
mean = state.metrics['mean'].tolist()
std = state.metrics['std'].tolist()
Resume engine's run from a state. User can load a `state_dict` and run engine starting from loaded state :
.. code-block:: python
# Restore from an epoch
state_dict = {"epoch": 3, "max_epochs": 100, "epoch_length": len(data_loader)}
# or an iteration
# state_dict = {"iteration": 500, "max_epochs": 100, "epoch_length": len(data_loader)}
trainer = Engine(...)
trainer.load_state_dict(state_dict)
trainer.run(data)
"""
_state_dict_all_req_keys = ("epoch_length", "max_epochs")
_state_dict_one_of_opt_keys = ("iteration", "epoch")
# Flag to disable engine._internal_run as generator feature for BC
interrupt_resume_enabled = True
def __init__(self, process_function: Callable[["Engine", Any], Any]):
self._event_handlers: Dict[Any, List] = defaultdict(list)
self.logger = logging.getLogger(__name__ + "." + self.__class__.__name__)
self._process_function = process_function
self.last_event_name: Optional[Events] = None
self.should_terminate = False
self.should_terminate_single_epoch = False
self.should_interrupt = False
self.state = State()
self._state_dict_user_keys: List[str] = []
self._allowed_events: List[EventEnum] = []
self._dataloader_iter: Optional[Iterator[Any]] = None
self._init_iter: Optional[int] = None
self.register_events(*Events)
if self._process_function is None:
raise ValueError("Engine must be given a processing function in order to run.")
_check_signature(process_function, "process_function", self, None)
# generator provided by self._internal_run_as_gen
self._internal_run_generator: Optional[Generator[Any, None, State]] = None
def register_events(
self, *event_names: Union[List[str], List[EventEnum]], event_to_attr: Optional[dict] = None
) -> None:
"""Add events that can be fired.
Registering an event will let the user trigger these events at any point.
This opens the door to make the :meth:`~ignite.engine.engine.Engine.run` loop even more
configurable.
By default, the events from :class:`~ignite.engine.events.Events` are registered.
Args:
event_names: Defines the name of the event being supported. New events can be a str
or an object derived from :class:`~ignite.engine.events.EventEnum`. See example below.
event_to_attr: A dictionary to map an event to a state attribute.
Examples:
.. code-block:: python
from ignite.engine import Engine, Events, EventEnum
class CustomEvents(EventEnum):
FOO_EVENT = "foo_event"
BAR_EVENT = "bar_event"
def process_function(e, batch):
# ...
trainer.fire_event("bwd_event")
loss.backward()
# ...
trainer.fire_event("opt_event")
optimizer.step()
trainer = Engine(process_function)
trainer.register_events(*CustomEvents)
trainer.register_events("bwd_event", "opt_event")
@trainer.on(Events.EPOCH_COMPLETED)
def trigger_custom_event():
if required(...):
trainer.fire_event(CustomEvents.FOO_EVENT)
else:
trainer.fire_event(CustomEvents.BAR_EVENT)
@trainer.on(CustomEvents.FOO_EVENT)
def do_foo_op():
# ...
@trainer.on(CustomEvents.BAR_EVENT)
def do_bar_op():
# ...
Example with State Attribute:
.. code-block:: python
from enum import Enum
from ignite.engine import Engine, EventEnum
class TBPTT_Events(EventEnum):
TIME_ITERATION_STARTED = "time_iteration_started"
TIME_ITERATION_COMPLETED = "time_iteration_completed"
TBPTT_event_to_attr = {
TBPTT_Events.TIME_ITERATION_STARTED: 'time_iteration',
TBPTT_Events.TIME_ITERATION_COMPLETED: 'time_iteration'
}
engine = Engine(process_function)
engine.register_events(*TBPTT_Events, event_to_attr=TBPTT_event_to_attr)
engine.run(data)
# engine.state contains an attribute time_iteration, which can be accessed
# using engine.state.time_iteration
"""
if not (event_to_attr is None or isinstance(event_to_attr, dict)):
raise ValueError(f"Expected event_to_attr to be dictionary. Got {type(event_to_attr)}.")
for index, e in enumerate(event_names):
if not isinstance(e, (str, EventEnum)):
raise TypeError(f"Value at {index} of event_names should be a str or EventEnum, but given {e}")
self._allowed_events.append(e)
if event_to_attr and e in event_to_attr:
State.event_to_attr[e] = event_to_attr[e]
# we need to update state attributes associated with new custom events
self.state._update_attrs()
def _handler_wrapper(self, handler: Callable, event_name: Any, event_filter: Callable) -> Callable:
# signature of the following wrapper will be inspected during registering to check if engine is necessary
# we have to build a wrapper with relevant signature : solution is functools.wraps
@functools.wraps(handler)
def wrapper(*args: Any, **kwargs: Any) -> Any:
event = self.state.get_event_attrib_value(event_name)
if event_filter(self, event):
return handler(*args, **kwargs)
# setup input handler as parent to make has_event_handler work
setattr(wrapper, "_parent", weakref.ref(handler))
return wrapper
def _assert_allowed_event(self, event_name: Any) -> None:
if event_name not in self._allowed_events:
self.logger.error(f"attempt to add event handler to an invalid event {event_name}")
raise ValueError(f"Event {event_name} is not a valid event for this {self.__class__.__name__}.")
def add_event_handler(self, event_name: Any, handler: Callable, *args: Any, **kwargs: Any) -> RemovableEventHandle:
"""Add an event handler to be executed when the specified event is fired.
Args:
event_name: An event or a list of events to attach the handler. Valid events are
from :class:`~ignite.engine.events.Events` or any ``event_name`` added by
:meth:`~ignite.engine.engine.Engine.register_events`.
handler: the callable event handler that should be invoked. No restrictions on its signature.
The first argument can be optionally `engine`, the :class:`~ignite.engine.engine.Engine` object,
handler is bound to.
args: optional args to be passed to ``handler``.
kwargs: optional keyword args to be passed to ``handler``.
Returns:
:class:`~ignite.engine.events.RemovableEventHandle`, which can be used to remove the handler.
Note:
Note that other arguments can be passed to the handler in addition to the `*args` and `**kwargs`
passed here, for example during :attr:`~ignite.engine.events.Events.EXCEPTION_RAISED`.
Examples:
.. code-block:: python
engine = Engine(process_function)
def print_epoch(engine):
print(f"Epoch: {engine.state.epoch}")
engine.add_event_handler(Events.EPOCH_COMPLETED, print_epoch)
events_list = Events.EPOCH_COMPLETED | Events.COMPLETED
def execute_something():
# do some thing not related to engine
pass
engine.add_event_handler(events_list, execute_something)
Note:
Since v0.3.0, Events become more flexible and allow to pass an event filter to the Engine.
See :class:`~ignite.engine.events.Events` for more details.
"""
if isinstance(event_name, EventsList):
for e in event_name:
self.add_event_handler(e, handler, *args, **kwargs)
return RemovableEventHandle(event_name, handler, self)
if isinstance(event_name, CallableEventWithFilter) and event_name.filter is not None:
event_filter = event_name.filter
handler = self._handler_wrapper(handler, event_name, event_filter)
self._assert_allowed_event(event_name)
event_args: Tuple[Any, ...] = ()
if event_name == Events.EXCEPTION_RAISED:
event_args += (Exception(),)
elif event_name == Events.TERMINATE_SINGLE_EPOCH:
event_args += (0,)
try:
_check_signature(handler, "handler", self, *(event_args + args), **kwargs)
self._event_handlers[event_name].append((handler, (self,) + args, kwargs))
except ValueError:
_check_signature(handler, "handler", *(event_args + args), **kwargs)
self._event_handlers[event_name].append((handler, args, kwargs))
self.logger.debug(f"Added handler for event {event_name}")
return RemovableEventHandle(event_name, handler, self)
def has_event_handler(self, handler: Callable, event_name: Optional[Any] = None) -> bool:
"""Check if the specified event has the specified handler.
Args:
handler: the callable event handler.
event_name: The event the handler attached to. Set this
to ``None`` to search all events.
"""
if event_name is not None:
if event_name not in self._event_handlers:
return False
events: Union[List[Any], Dict[Any, List]] = [event_name]
else:
events = self._event_handlers
for e in events:
for h, _, _ in self._event_handlers[e]:
if self._compare_handlers(handler, h):
return True
return False
@staticmethod
def _compare_handlers(user_handler: Callable, registered_handler: Callable) -> bool:
if hasattr(registered_handler, "_parent"):
registered_handler = registered_handler._parent()
return registered_handler == user_handler
def remove_event_handler(self, handler: Callable, event_name: Any) -> None:
"""Remove event handler `handler` from registered handlers of the engine
Args:
handler: the callable event handler that should be removed
event_name: The event the handler attached to.
"""
if event_name not in self._event_handlers:
raise ValueError(f"Input event name '{event_name}' does not exist")
new_event_handlers = [
(h, args, kwargs)
for h, args, kwargs in self._event_handlers[event_name]
if not self._compare_handlers(handler, h)
]
if len(new_event_handlers) == len(self._event_handlers[event_name]):
raise ValueError(f"Input handler '{handler}' is not found among registered event handlers")
self._event_handlers[event_name] = new_event_handlers
def on(self, event_name: Any, *args: Any, **kwargs: Any) -> Callable:
"""Decorator shortcut for :meth:`~ignite.engine.engine.Engine.add_event_handler`.
Args:
event_name: An event to attach the handler to. Valid events are from :class:`~ignite.engine.events.Events`
or any ``event_name`` added by :meth:`~ignite.engine.engine.Engine.register_events`.
args: optional args to be passed to `handler`.
kwargs: optional keyword args to be passed to `handler`.
Examples:
.. code-block:: python
engine = Engine(process_function)
@engine.on(Events.EPOCH_COMPLETED)
def print_epoch():
print(f"Epoch: {engine.state.epoch}")
@engine.on(Events.EPOCH_COMPLETED | Events.COMPLETED)
def execute_something():
# do some thing not related to engine
pass
"""
def decorator(f: Callable) -> Callable:
self.add_event_handler(event_name, f, *args, **kwargs)
return f
return decorator
def _fire_event(self, event_name: Any, *event_args: Any, **event_kwargs: Any) -> None:
"""Execute all the handlers associated with given event.
This method executes all handlers associated with the event
`event_name`. Optional positional and keyword arguments can be used to
pass arguments to **all** handlers added with this event. These
arguments updates arguments passed using :meth:`~ignite.engine.engine.Engine.add_event_handler`.
Args:
event_name: event for which the handlers should be executed. Valid
events are from :class:`~ignite.engine.events.Events` or any `event_name` added by
:meth:`~ignite.engine.engine.Engine.register_events`.
*event_args: optional args to be passed to all handlers.
**event_kwargs: optional keyword args to be passed to all handlers.
"""
self.logger.debug(f"{self.state.epoch} | {self.state.iteration}, Firing handlers for event {event_name}")
self.last_event_name = event_name
for func, args, kwargs in self._event_handlers[event_name]:
kwargs.update(event_kwargs)
first, others = ((args[0],), args[1:]) if (args and args[0] == self) else ((), args)
func(*first, *(event_args + others), **kwargs)
def fire_event(self, event_name: Any) -> None:
"""Execute all the handlers associated with given event.
This method executes all handlers associated with the event
`event_name`. This is the method used in :meth:`~ignite.engine.engine.Engine.run` to call the
core events found in :class:`~ignite.engine.events.Events`.
Custom events can be fired if they have been registered before with
:meth:`~ignite.engine.engine.Engine.register_events`. The engine `state` attribute should be used
to exchange "dynamic" data among `process_function` and handlers.
This method is called automatically for core events. If no custom
events are used in the engine, there is no need for the user to call
the method.
Args:
event_name: event for which the handlers should be executed. Valid
events are from :class:`~ignite.engine.events.Events` or any `event_name` added by
:meth:`~ignite.engine.engine.Engine.register_events`.
"""
self._assert_allowed_event(event_name)
return self._fire_event(event_name)
def interrupt(self) -> None:
"""Sends interrupt signal to the engine, so that it interrupts the run after
the current iteration. The run can be resumed by calling
:meth:`~ignite.engine.engine.Engine.run`. Data iteration will continue from the interrupted state.
Examples:
.. testcode::
from ignite.engine import Engine, Events
data = range(10)
max_epochs = 3
def check_input_data(e, b):
print(f"Epoch {engine.state.epoch}, Iter {engine.state.iteration} | data={b}")
i = (e.state.iteration - 1) % len(data)
assert b == data[i]
engine = Engine(check_input_data)
@engine.on(Events.ITERATION_COMPLETED(every=11))
def call_interrupt():
engine.interrupt()
print("Start engine run with interruptions:")
state = engine.run(data, max_epochs=max_epochs)
print("1 Engine run is interrupted at ", state.epoch, state.iteration)
state = engine.run(data, max_epochs=max_epochs)
print("2 Engine run is interrupted at ", state.epoch, state.iteration)
state = engine.run(data, max_epochs=max_epochs)
print("3 Engine ended the run at ", state.epoch, state.iteration)
.. dropdown:: Output
.. testoutput::
Start engine run with interruptions:
Epoch 1, Iter 1 | data=0
Epoch 1, Iter 2 | data=1
Epoch 1, Iter 3 | data=2
Epoch 1, Iter 4 | data=3
Epoch 1, Iter 5 | data=4
Epoch 1, Iter 6 | data=5
Epoch 1, Iter 7 | data=6
Epoch 1, Iter 8 | data=7
Epoch 1, Iter 9 | data=8
Epoch 1, Iter 10 | data=9
Epoch 2, Iter 11 | data=0
1 Engine run is interrupted at 2 11
Epoch 2, Iter 12 | data=1
Epoch 2, Iter 13 | data=2
Epoch 2, Iter 14 | data=3
Epoch 2, Iter 15 | data=4
Epoch 2, Iter 16 | data=5
Epoch 2, Iter 17 | data=6
Epoch 2, Iter 18 | data=7
Epoch 2, Iter 19 | data=8
Epoch 2, Iter 20 | data=9
Epoch 3, Iter 21 | data=0
Epoch 3, Iter 22 | data=1
2 Engine run is interrupted at 3 22
Epoch 3, Iter 23 | data=2
Epoch 3, Iter 24 | data=3
Epoch 3, Iter 25 | data=4
Epoch 3, Iter 26 | data=5
Epoch 3, Iter 27 | data=6
Epoch 3, Iter 28 | data=7
Epoch 3, Iter 29 | data=8
Epoch 3, Iter 30 | data=9
3 Engine ended the run at 3 30
.. versionadded:: 0.4.10
"""
if not self.interrupt_resume_enabled:
raise RuntimeError(
"Engine 'interrupt/resume' feature is disabled. "
"Please, set Engine.interrupt_resume_enabled=True to enable it"
)
self.logger.info("interrupt signaled. Engine will interrupt the run after current iteration is finished.")
self.should_interrupt = True
def terminate(self) -> None:
"""Sends terminate signal to the engine, so that it terminates completely the run. The run is
terminated after the event on which ``terminate`` method was called. The following events are triggered:
- ...
- Terminating event
- :attr:`~ignite.engine.events.Events.TERMINATE`
- :attr:`~ignite.engine.events.Events.COMPLETED`
Examples:
.. testcode::
from ignite.engine import Engine, Events
def func(engine, batch):
print(engine.state.epoch, engine.state.iteration, " | ", batch)
max_epochs = 4
data = range(10)
engine = Engine(func)
@engine.on(Events.ITERATION_COMPLETED(once=14))
def terminate():
print(f"-> terminate at iteration: {engine.state.iteration}")
engine.terminate()
print("Start engine run:")
state = engine.run(data, max_epochs=max_epochs)
print("1 Engine run is terminated at ", state.epoch, state.iteration)
state = engine.run(data, max_epochs=max_epochs)
print("2 Engine ended the run at ", state.epoch, state.iteration)
.. dropdown:: Output
.. testoutput::
Start engine run:
1 1 | 0
1 2 | 1
1 3 | 2
1 4 | 3
1 5 | 4
1 6 | 5
1 7 | 6
1 8 | 7
1 9 | 8
1 10 | 9
2 11 | 0
2 12 | 1
2 13 | 2
2 14 | 3
-> terminate at iteration: 14
1 Engine run is terminated at 2 14
3 15 | 0
3 16 | 1
3 17 | 2
3 18 | 3
3 19 | 4
3 20 | 5
3 21 | 6
3 22 | 7
3 23 | 8
3 24 | 9
4 25 | 0
4 26 | 1
4 27 | 2
4 28 | 3
4 29 | 4
4 30 | 5
4 31 | 6
4 32 | 7
4 33 | 8
4 34 | 9
2 Engine ended the run at 4 34
.. versionchanged:: 0.4.10
Behaviour changed, for details see https://github.com/pytorch/ignite/issues/2669
"""
self.logger.info("Terminate signaled. Engine will stop after current iteration is finished.")
self.should_terminate = True
def terminate_epoch(self) -> None:
"""Sends terminate signal to the engine, so that it terminates the current epoch. The run
continues from the next epoch. The following events are triggered:
- ...
- Event on which ``terminate_epoch`` method is called
- :attr:`~ignite.engine.events.Events.TERMINATE_SINGLE_EPOCH`
- :attr:`~ignite.engine.events.Events.EPOCH_COMPLETED`
- :attr:`~ignite.engine.events.Events.EPOCH_STARTED`
- ...
"""
self.logger.info(
"Terminate current epoch is signaled. "
"Current epoch iteration will stop after current iteration is finished."
)
self.should_terminate_single_epoch = True
def _handle_exception(self, e: BaseException) -> None:
if Events.EXCEPTION_RAISED in self._event_handlers:
self._fire_event(Events.EXCEPTION_RAISED, e)
else:
raise e
@property
def state_dict_user_keys(self) -> List:
return self._state_dict_user_keys
def state_dict(self) -> OrderedDict:
"""Returns a dictionary containing engine's state: "epoch_length", "max_epochs" and "iteration" and
other state values defined by `engine.state_dict_user_keys`
.. code-block:: python
engine = Engine(...)
engine.state_dict_user_keys.append("alpha")
engine.state_dict_user_keys.append("beta")
...
@engine.on(Events.STARTED)
def init_user_value(_):
engine.state.alpha = 0.1
engine.state.beta = 1.0
@engine.on(Events.COMPLETED)
def save_engine(_):
state_dict = engine.state_dict()
assert "alpha" in state_dict and "beta" in state_dict
torch.save(state_dict, "/tmp/engine.pt")
Returns:
OrderedDict:
a dictionary containing engine's state
"""
keys: Tuple[str, ...] = self._state_dict_all_req_keys + (self._state_dict_one_of_opt_keys[0],)
keys += tuple(self._state_dict_user_keys)
return OrderedDict([(k, getattr(self.state, k)) for k in keys])
def load_state_dict(self, state_dict: Mapping) -> None:
"""Setups engine from `state_dict`.
State dictionary should contain keys: `iteration` or `epoch`, `max_epochs` and `epoch_length`.
If `engine.state_dict_user_keys` contains keys, they should be also present in the state dictionary.
Iteration and epoch values are 0-based: the first iteration or epoch is zero.
This method does not remove any custom attributes added by user.
Args:
state_dict: a dict with parameters
.. code-block:: python
# Restore from the 4rd epoch
state_dict = {"epoch": 3, "max_epochs": 100, "epoch_length": len(data_loader)}
# or 500th iteration
# state_dict = {"iteration": 499, "max_epochs": 100, "epoch_length": len(data_loader)}
trainer = Engine(...)
trainer.load_state_dict(state_dict)
trainer.run(data)
"""
super(Engine, self).load_state_dict(state_dict)
for k in self._state_dict_user_keys:
if k not in state_dict:
raise ValueError(
f"Required user state attribute '{k}' is absent in provided state_dict '{state_dict.keys()}'"
)
self.state.max_epochs = state_dict["max_epochs"]
self.state.epoch_length = state_dict["epoch_length"]
for k in self._state_dict_user_keys:
setattr(self.state, k, state_dict[k])
if "iteration" in state_dict:
self.state.iteration = state_dict["iteration"]
self.state.epoch = 0
if self.state.epoch_length is not None:
self.state.epoch = self.state.iteration // self.state.epoch_length
elif "epoch" in state_dict:
self.state.epoch = state_dict["epoch"]
if self.state.epoch_length is None:
raise ValueError(
"If epoch is provided in the state dict, epoch_length should not be None. "
f"Input state_dict: {state_dict}"
)
self.state.iteration = self.state.epoch_length * self.state.epoch
@staticmethod
def _is_done(state: State) -> bool:
is_done_count = (
state.epoch_length is not None
and state.max_epochs is not None
and state.iteration >= state.epoch_length * state.max_epochs
)
is_done_epochs = state.max_epochs is not None and state.epoch >= state.max_epochs
return is_done_count or is_done_epochs
def set_data(self, data: Union[Iterable, DataLoader]) -> None:
"""Method to set data. After calling the method the next batch passed to `processing_function` is
from newly provided data. Please, note that epoch length is not modified.
Args:
data: Collection of batches allowing repeated iteration (e.g., list or `DataLoader`).
Examples:
User can switch data provider during the training:
.. code-block:: python
data1 = ...
data2 = ...
switch_iteration = 5000
def train_step(e, batch):
# when iteration <= switch_iteration
# batch is from data1
# when iteration > switch_iteration
# batch is from data2
...
trainer = Engine(train_step)
@trainer.on(Events.ITERATION_COMPLETED(once=switch_iteration))
def switch_dataloader():
trainer.set_data(data2)
trainer.run(data1, max_epochs=100)
"""
self.state.dataloader = data
self._dataloader_iter = iter(self.state.dataloader)
def run(
self,
data: Optional[Iterable] = None,
max_epochs: Optional[int] = None,
epoch_length: Optional[int] = None,
) -> State:
"""Runs the ``process_function`` over the passed data.
Engine has a state and the following logic is applied in this function:
- At the first call, new state is defined by `max_epochs`, `epoch_length`, if provided.
A timer for total and per-epoch time is initialized when Events.STARTED is handled.
- If state is already defined such that there are iterations to run until `max_epochs` and no input arguments
provided, state is kept and used in the function.
- If state is defined and engine is "done" (no iterations to run until `max_epochs`), a new state is defined.
- If state is defined, engine is NOT "done", then input arguments if provided override defined state.
Args:
data: Collection of batches allowing repeated iteration (e.g., list or `DataLoader`). If not provided, then
``epoch_length`` is required and ``batch`` argument of ``process_function`` will be ``None``.
max_epochs: Max epochs to run for (default: None).
If a new state should be created (first run or run again from ended engine), it's default value is 1.
If run is resuming from a state, provided `max_epochs` will be taken into account and should be larger
than `engine.state.max_epochs`.
epoch_length: Number of iterations to count as one epoch. By default, it can be set as
`len(data)`. If `data` is an iterator and `epoch_length` is not set, then it will be automatically
determined as the iteration on which data iterator raises `StopIteration`.
This argument should not change if run is resuming from a state.
Returns:
State: output state.
Note:
User can dynamically preprocess input batch at :attr:`~ignite.engine.events.Events.ITERATION_STARTED` and
store output batch in `engine.state.batch`. Latter is passed as usually to `process_function` as argument:
.. code-block:: python
trainer = ...
@trainer.on(Events.ITERATION_STARTED)
def switch_batch(engine):
engine.state.batch = preprocess_batch(engine.state.batch)
Restart the training from the beginning. User can reset `max_epochs = None`:
.. code-block:: python
# ...
trainer.run(train_loader, max_epochs=5)
# Reset model weights etc. and restart the training
trainer.state.max_epochs = None
trainer.run(train_loader, max_epochs=2)
"""
if data is not None and not isinstance(data, Iterable):
raise TypeError("Argument data should be iterable")
if self.state.max_epochs is not None:
# Check and apply overridden parameters
if max_epochs is not None:
if max_epochs < self.state.epoch:
raise ValueError(
"Argument max_epochs should be greater than or equal to the start "
f"epoch defined in the state: {max_epochs} vs {self.state.epoch}. "
"Please, set engine.state.max_epochs = None "
"before calling engine.run() in order to restart the training from the beginning."
)
self.state.max_epochs = max_epochs
if epoch_length is not None:
if epoch_length != self.state.epoch_length:
raise ValueError(
"Argument epoch_length should be same as in the state, "
f"but given {epoch_length} vs {self.state.epoch_length}"
)
if self.state.max_epochs is None or (self._is_done(self.state) and self._internal_run_generator is None):
# Create new state
if max_epochs is None:
max_epochs = 1
if epoch_length is None:
if data is None:
raise ValueError("epoch_length should be provided if data is None")
epoch_length = self._get_data_length(data)
if epoch_length is not None and epoch_length < 1:
raise ValueError("Input data has zero size. Please provide non-empty data")
self.state.iteration = 0
self.state.epoch = 0
self.state.max_epochs = max_epochs
self.state.epoch_length = epoch_length
# Reset generator if previously used
self._internal_run_generator = None
self.logger.info(f"Engine run starting with max_epochs={max_epochs}.")
else:
self.logger.info(
f"Engine run resuming from iteration {self.state.iteration}, "
f"epoch {self.state.epoch} until {self.state.max_epochs} epochs"
)
if self.state.epoch_length is None and data is None:
raise ValueError("epoch_length should be provided if data is None")
if self.should_terminate:
# If engine was terminated and now is resuming from terminated state
# we need to initialize iter_counter as 0
self._init_iter = 0
if self._dataloader_iter is None:
self.state.dataloader = data
if self.interrupt_resume_enabled:
return self._internal_run()
else:
return self._internal_run_legacy()
@staticmethod
def _init_timers(state: State) -> None:
state.times[Events.EPOCH_COMPLETED.name] = 0.0
state.times[Events.COMPLETED.name] = 0.0
def _get_data_length(self, data: Iterable) -> Optional[int]:
try:
if hasattr(data, "__len__"):
return len(data) # type: ignore[arg-type]
except TypeError:
# _InfiniteConstantSampler can raise a TypeError on DataLoader length of a IterableDataset
pass
return None
def _setup_dataloader_iter(self) -> None:
if self.state.dataloader is None:
if self.state.epoch_length is None:
raise RuntimeError(
"Internal error, self.state.epoch_length is None. "
"Please, file an issue if you encounter this error."
)
self._dataloader_iter = _get_none_data_iter(self.state.epoch_length)
else:
self._dataloader_iter = iter(self.state.dataloader)
def _setup_engine(self) -> None:
self._setup_dataloader_iter()
if self._init_iter is None:
iteration = self.state.iteration
# Below we define initial counter value for _run_once_on_dataset to measure a single epoch
if self.state.epoch_length is not None:
iteration %= self.state.epoch_length
self._init_iter = iteration
def _internal_run(self) -> State:
if self._internal_run_generator is None:
self._internal_run_generator = self._internal_run_as_gen()
try:
return next(self._internal_run_generator)
except StopIteration as out:
self._internal_run_generator = None
return out.value
def _internal_run_as_gen(self) -> Generator[Any, None, State]:
self.should_terminate = self.should_terminate_single_epoch = self.should_interrupt = False
self._init_timers(self.state)
try:
try:
start_time = time.time()
self._fire_event(Events.STARTED)
yield from self._maybe_terminate_or_interrupt()
while not self._is_done(self.state) and not self.should_terminate:
self.state.epoch += 1
handlers_start_time = time.time()
self._fire_event(Events.EPOCH_STARTED)
epoch_time_taken = time.time() - handlers_start_time
yield from self._maybe_terminate_or_interrupt()
if self._dataloader_iter is None:
self._setup_engine()
epoch_time_taken += yield from self._run_once_on_dataset_as_gen()
# time is available for handlers but must be updated after fire
self.state.times[Events.EPOCH_COMPLETED.name] = epoch_time_taken
handlers_start_time = time.time()
self._fire_event(Events.EPOCH_COMPLETED)
epoch_time_taken += time.time() - handlers_start_time
# update time wrt handlers
self.state.times[Events.EPOCH_COMPLETED.name] = epoch_time_taken
yield from self._maybe_terminate_or_interrupt()
hours, mins, secs = _to_hours_mins_secs(epoch_time_taken)
self.logger.info(
f"Epoch[{self.state.epoch}] Complete. Time taken: {hours:02d}:{mins:02d}:{secs:06.3f}"
)
except _EngineTerminateException:
self._fire_event(Events.TERMINATE)
time_taken = time.time() - start_time
# time is available for handlers but must be updated after fire
self.state.times[Events.COMPLETED.name] = time_taken
handlers_start_time = time.time()
self._fire_event(Events.COMPLETED)
time_taken += time.time() - handlers_start_time
# update time wrt handlers
self.state.times[Events.COMPLETED.name] = time_taken
hours, mins, secs = _to_hours_mins_secs(time_taken)
self.logger.info(f"Engine run complete. Time taken: {hours:02d}:{mins:02d}:{secs:06.3f}")
except BaseException as e:
self._dataloader_iter = None
self.logger.error(f"Engine run is terminating due to exception: {e}")
self._handle_exception(e)
self._dataloader_iter = None
return self.state
def _maybe_terminate_or_interrupt(self) -> Generator:
if self.should_terminate:
raise _EngineTerminateException()
if self.should_terminate_single_epoch:
raise _EngineTerminateSingleEpochException()
if self.should_interrupt:
self._fire_event(Events.INTERRUPT)
self.should_interrupt = False
yield self.state
def _run_once_on_dataset_as_gen(self) -> Generator[State, None, float]:
start_time = time.time()
# We need to setup iter_counter > 0 if we resume from an iteration
iter_counter = 0 if self._init_iter is None else self._init_iter
self._init_iter = None
should_exit = False
try:
if self._dataloader_iter is None:
raise RuntimeError(
"Internal error, self._dataloader_iter is None. "
"Please, file an issue if you encounter this error."
)
while True:
self.state.batch = self.state.output = None
try:
# Avoid Events.GET_BATCH_STARTED triggered twice when data iter is restarted
if self.last_event_name != Events.DATALOADER_STOP_ITERATION:
# We should not trigger GET_BATCH_STARTED, GET_BATCH_COMPLETED, DATALOADER_STOP_ITERATION events
# if no data was provided to engine.run(data=None, ...)
if self.state.dataloader is not None:
self._fire_event(Events.GET_BATCH_STARTED)
yield from self._maybe_terminate_or_interrupt()
self.state.batch = next(self._dataloader_iter)
# We should not trigger GET_BATCH_STARTED, GET_BATCH_COMPLETED, DATALOADER_STOP_ITERATION events
# if no data was provided to engine.run(data=None, ...)
if self.state.dataloader is not None:
self._fire_event(Events.GET_BATCH_COMPLETED)
yield from self._maybe_terminate_or_interrupt()
iter_counter += 1
should_exit = False
except StopIteration:
# Define self.state.epoch_length if it is not yet set
if self.state.epoch_length is None:
# Define epoch length and stop the epoch
self.state.epoch_length = iter_counter
break
# Should exit while loop if we can not iterate
if should_exit:
if not self._is_done(self.state) and self.state.max_epochs is not None:
total_iters = self.state.epoch_length * self.state.max_epochs
warnings.warn(
"Data iterator can not provide data anymore but required total number of "
"iterations to run is not reached. "
f"Current iteration: {self.state.iteration} vs Total iterations to run : {total_iters}"
)
break
# We should not trigger GET_BATCH_STARTED, GET_BATCH_COMPLETED, DATALOADER_STOP_ITERATION events
# if no data was provided to engine.run(data=None, ...)
if self.state.dataloader is not None:
self._fire_event(Events.DATALOADER_STOP_ITERATION)
yield from self._maybe_terminate_or_interrupt()
self._setup_dataloader_iter()
should_exit = True
continue
self.state.iteration += 1
self._fire_event(Events.ITERATION_STARTED)
yield from self._maybe_terminate_or_interrupt()
self.state.output = self._process_function(self, self.state.batch)
self._fire_event(Events.ITERATION_COMPLETED)
yield from self._maybe_terminate_or_interrupt()
if self.state.epoch_length is not None and iter_counter == self.state.epoch_length:
break
except _EngineTerminateSingleEpochException:
self._fire_event(Events.TERMINATE_SINGLE_EPOCH, iter_counter=iter_counter)
self.should_terminate_single_epoch = False
self._setup_dataloader_iter()
except _EngineTerminateException as e:
# we need to reraise this exception such that it is not handled
# as a general exception by the code below
raise e
except Exception as e:
self.logger.error(f"Current run is terminating due to exception: {e}")
self._handle_exception(e)
return time.time() - start_time
def _maybe_terminate_legacy(self) -> None:
if self.should_terminate:
raise _EngineTerminateException()
if self.should_terminate_single_epoch:
raise _EngineTerminateSingleEpochException()
def _internal_run_legacy(self) -> State:
# internal_run without generator for BC
self.should_terminate = self.should_terminate_single_epoch = self.should_interrupt = False
self._init_timers(self.state)
try:
try:
start_time = time.time()
self._fire_event(Events.STARTED)
self._maybe_terminate_legacy()
while not self._is_done(self.state) and not self.should_terminate:
self.state.epoch += 1
handlers_start_time = time.time()
self._fire_event(Events.EPOCH_STARTED)
epoch_time_taken = time.time() - handlers_start_time
self._maybe_terminate_legacy()
if self._dataloader_iter is None:
self._setup_engine()
epoch_time_taken += self._run_once_on_dataset_legacy()
# time is available for handlers but must be updated after fire
self.state.times[Events.EPOCH_COMPLETED.name] = epoch_time_taken
handlers_start_time = time.time()
self._fire_event(Events.EPOCH_COMPLETED)
epoch_time_taken += time.time() - handlers_start_time
# update time wrt handlers
self.state.times[Events.EPOCH_COMPLETED.name] = epoch_time_taken
self._maybe_terminate_legacy()
hours, mins, secs = _to_hours_mins_secs(epoch_time_taken)
self.logger.info(
f"Epoch[{self.state.epoch}] Complete. Time taken: {hours:02d}:{mins:02d}:{secs:06.3f}"
)
except _EngineTerminateException:
self._fire_event(Events.TERMINATE)
time_taken = time.time() - start_time
# time is available for handlers but must be updated after fire
self.state.times[Events.COMPLETED.name] = time_taken
handlers_start_time = time.time()
self._fire_event(Events.COMPLETED)
time_taken += time.time() - handlers_start_time
# update time wrt handlers
self.state.times[Events.COMPLETED.name] = time_taken
hours, mins, secs = _to_hours_mins_secs(time_taken)
self.logger.info(f"Engine run complete. Time taken: {hours:02d}:{mins:02d}:{secs:06.3f}")
except BaseException as e:
self._dataloader_iter = None
self.logger.error(f"Engine run is terminating due to exception: {e}")
self._handle_exception(e)
self._dataloader_iter = None
return self.state
def _run_once_on_dataset_legacy(self) -> float:
start_time = time.time()
# We need to setup iter_counter > 0 if we resume from an iteration
iter_counter = 0 if self._init_iter is None else self._init_iter
self._init_iter = None
should_exit = False
try:
if self._dataloader_iter is None:
raise RuntimeError(
"Internal error, self._dataloader_iter is None. "
"Please, file an issue if you encounter this error."
)
while True:
self.state.batch = self.state.output = None
try:
# Avoid Events.GET_BATCH_STARTED triggered twice when data iter is restarted
if self.last_event_name != Events.DATALOADER_STOP_ITERATION:
# We should not trigger GET_BATCH_STARTED, GET_BATCH_COMPLETED, DATALOADER_STOP_ITERATION events
# if no data was provided to engine.run(data=None, ...)
if self.state.dataloader is not None:
self._fire_event(Events.GET_BATCH_STARTED)
self._maybe_terminate_legacy()
self.state.batch = next(self._dataloader_iter)
# We should not trigger GET_BATCH_STARTED, GET_BATCH_COMPLETED, DATALOADER_STOP_ITERATION events
# if no data was provided to engine.run(data=None, ...)
if self.state.dataloader is not None:
self._fire_event(Events.GET_BATCH_COMPLETED)
self._maybe_terminate_legacy()
iter_counter += 1
should_exit = False
except StopIteration:
# Define self.state.epoch_length if it is not yet set
if self.state.epoch_length is None:
# Define epoch length and stop the epoch
self.state.epoch_length = iter_counter
break
# Should exit while loop if we can not iterate
if should_exit:
if not self._is_done(self.state) and self.state.max_epochs is not None:
total_iters = self.state.epoch_length * self.state.max_epochs
warnings.warn(
"Data iterator can not provide data anymore but required total number of "
"iterations to run is not reached. "
f"Current iteration: {self.state.iteration} vs Total iterations to run : {total_iters}"
)
break
# We should not trigger GET_BATCH_STARTED, GET_BATCH_COMPLETED, DATALOADER_STOP_ITERATION events
# if no data was provided to engine.run(data=None, ...)
if self.state.dataloader is not None:
self._fire_event(Events.DATALOADER_STOP_ITERATION)
self._maybe_terminate_legacy()
self._setup_dataloader_iter()
should_exit = True
continue
self.state.iteration += 1
self._fire_event(Events.ITERATION_STARTED)
self._maybe_terminate_legacy()
self.state.output = self._process_function(self, self.state.batch)
self._fire_event(Events.ITERATION_COMPLETED)
self._maybe_terminate_legacy()
if self.state.epoch_length is not None and iter_counter == self.state.epoch_length:
break
except _EngineTerminateSingleEpochException:
self._fire_event(Events.TERMINATE_SINGLE_EPOCH, iter_counter=iter_counter)
self.should_terminate_single_epoch = False
self._setup_dataloader_iter()
except _EngineTerminateException as e:
# we need to reraise this exception such that it is not handled
# as a general exception by the code below
raise e
except Exception as e:
self.logger.error(f"Current run is terminating due to exception: {e}")
self._handle_exception(e)
return time.time() - start_time
def _get_none_data_iter(size: int) -> Iterator:
# Sized iterator for data as None
for _ in range(size):
yield None
class _EngineTerminateSingleEpochException(Exception):
"""
Exception associated with Terminate Single Epoch event
"""
pass
class _EngineTerminateException(Exception):
"""
Exception associated with Terminate event
"""
pass
|