1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
|
"""ClearML logger and its helper handlers."""
import os
import tempfile
import warnings
from collections import defaultdict
from datetime import datetime
from enum import Enum
from typing import Any, Callable, DefaultDict, List, Mapping, Optional, Tuple, Type, Union
from torch.optim import Optimizer
import ignite.distributed as idist
from ignite.engine import Engine, Events
from ignite.handlers.base_logger import (
BaseLogger,
BaseOptimizerParamsHandler,
BaseOutputHandler,
BaseWeightsHandler,
BaseWeightsScalarHandler,
)
from ignite.handlers.checkpoint import DiskSaver
from ignite.handlers.utils import global_step_from_engine # noqa
__all__ = [
"ClearMLLogger",
"ClearMLSaver",
"OptimizerParamsHandler",
"OutputHandler",
"WeightsScalarHandler",
"WeightsHistHandler",
"GradsScalarHandler",
"GradsHistHandler",
"global_step_from_engine",
]
class ClearMLLogger(BaseLogger):
"""
`ClearML <https://github.com/allegroai/clearml>`_ handler to log metrics, text, model/optimizer parameters,
plots during training and validation.
Also supports model checkpoints logging and upload to the storage solution of your choice (i.e. ClearML File server,
S3 bucket etc.)
.. code-block:: bash
pip install clearml
clearml-init
Args:
kwargs: Keyword arguments accepted from ``Task.init`` method.
All arguments are optional. If a ClearML Task has already been created,
kwargs will be ignored and the current ClearML Task will be used.
Examples:
.. code-block:: python
from ignite.handlers.clearml_logger import *
# Create a logger
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Attach the logger to the trainer to log training loss at each iteration
clearml_logger.attach_output_handler(
trainer,
event_name=Events.ITERATION_COMPLETED,
tag="training",
output_transform=lambda loss: {"loss": loss}
)
# Attach the logger to the evaluator on the training dataset and log NLL, Accuracy metrics after each epoch
# We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch
# of the `trainer` instead of `train_evaluator`.
clearml_logger.attach_output_handler(
train_evaluator,
event_name=Events.EPOCH_COMPLETED,
tag="training",
metric_names=["nll", "accuracy"],
global_step_transform=global_step_from_engine(trainer),
)
# Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after
# each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch of the
# `trainer` instead of `evaluator`.
clearml_logger.attach_output_handler(
evaluator,
event_name=Events.EPOCH_COMPLETED,
tag="validation",
metric_names=["nll", "accuracy"],
global_step_transform=global_step_from_engine(trainer)),
)
# Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration
clearml_logger.attach_opt_params_handler(
trainer,
event_name=Events.ITERATION_STARTED,
optimizer=optimizer,
param_name='lr' # optional
)
# Attach the logger to the trainer to log model's weights norm after each iteration
clearml_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=WeightsScalarHandler(model)
)
"""
def __init__(self, **kwargs: Any):
try:
from clearml import Task
from clearml.binding.frameworks.tensorflow_bind import WeightsGradientHistHelper
except ImportError:
raise ModuleNotFoundError(
"This contrib module requires clearml to be installed. "
"You may install clearml using: \n pip install clearml \n"
)
experiment_kwargs = {k: v for k, v in kwargs.items() if k not in ("project_name", "task_name", "task_type")}
if self.bypass_mode():
warnings.warn("ClearMLSaver: running in bypass mode")
# Try to retrieve current the ClearML Task before trying to create a new one
self._task = Task.current_task()
if self._task is None:
self._task = Task.init(
project_name=kwargs.get("project_name"),
task_name=kwargs.get("task_name"),
task_type=kwargs.get("task_type", Task.TaskTypes.training),
**experiment_kwargs,
)
self.clearml_logger = self._task.get_logger()
self.grad_helper = WeightsGradientHistHelper(logger=self.clearml_logger, report_freq=1)
@classmethod
def set_bypass_mode(cls, bypass: bool) -> None:
"""
Set ``clearml.Task`` to offline mode.
Will bypass all outside communication, and will save all data and logs to a local session folder.
Should only be used in "standalone mode", when there is no access to the *clearml-server*.
Args:
bypass: If ``True``, all outside communication is skipped.
Data and logs will be stored in a local session folder.
For more information, please refer to `ClearML docs
<https://clear.ml/docs/latest/docs/clearml_sdk/task_sdk/#offline-mode>`_.
"""
from clearml import Task
setattr(cls, "_bypass", bypass)
Task.set_offline(offline_mode=bypass)
@classmethod
def bypass_mode(cls) -> bool:
"""
Returns the bypass mode state.
Note:
`GITHUB_ACTIONS` env will automatically set bypass_mode to ``True``
unless overridden specifically with ``ClearMLLogger.set_bypass_mode(False)``.
For more information, please refer to `ClearML docs
<https://clear.ml/docs/latest/docs/clearml_sdk/task_sdk/#offline-mode>`_.
Return:
If True, ``clearml.Task`` is on offline mode, and all outside communication is skipped.
"""
return getattr(cls, "_bypass", bool(os.environ.get("CI")))
def __getattr__(self, attr: Any) -> Any:
"""
Calls the corresponding method of ``clearml.Logger``.
Args:
attr: methods of the ``clearml.Logger`` class.
"""
return getattr(self.clearml_logger, attr)
def get_task(self) -> Any:
"""
Returns the task context that the logger is reporting.
Return:
Returns the current task, equivalent to ``clearml.Task.current_task()``.
"""
return self._task
def close(self) -> None:
self.clearml_logger.flush()
def _create_output_handler(self, *args: Any, **kwargs: Any) -> "OutputHandler":
return OutputHandler(*args, **kwargs)
def _create_opt_params_handler(self, *args: Any, **kwargs: Any) -> "OptimizerParamsHandler":
return OptimizerParamsHandler(*args, **kwargs)
class OutputHandler(BaseOutputHandler):
"""Helper handler to log engine's output and/or metrics
Args:
tag: common title for all produced plots. For example, "training"
metric_names: list of metric names to plot or a string "all" to plot all available
metrics.
output_transform: output transform function to prepare `engine.state.output` as a number.
For example, `output_transform = lambda output: output`
This function can also return a dictionary, e.g `{"loss": loss1, "another_loss": loss2}` to label the plot
with corresponding keys.
global_step_transform: global step transform function to output a desired global step.
Input of the function is `(engine, event_name)`. Output of function should be an integer.
Default is None, global_step based on attached engine. If provided,
uses function output as global_step. To setup global step from another engine, please use
:meth:`~ignite.handlers.clearml_logger.global_step_from_engine`.
state_attributes: list of attributes of the ``trainer.state`` to plot.
Examples:
.. code-block:: python
from ignite.handlers.clearml_logger import *
# Create a logger
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after
# each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch
# of the `trainer`:
clearml_logger.attach(
evaluator,
log_handler=OutputHandler(
tag="validation",
metric_names=["nll", "accuracy"],
global_step_transform=global_step_from_engine(trainer)
),
event_name=Events.EPOCH_COMPLETED
)
# or equivalently
clearml_logger.attach_output_handler(
evaluator,
event_name=Events.EPOCH_COMPLETED,
tag="validation",
metric_names=["nll", "accuracy"],
global_step_transform=global_step_from_engine(trainer)
)
Another example, where model is evaluated every 500 iterations:
.. code-block:: python
from ignite.handlers.clearml_logger import *
@trainer.on(Events.ITERATION_COMPLETED(every=500))
def evaluate(engine):
evaluator.run(validation_set, max_epochs=1)
# Create a logger
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
def global_step_transform(*args, **kwargs):
return trainer.state.iteration
# Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after
# every 500 iterations. Since evaluator engine does not have access to the training iteration, we
# provide a global_step_transform to return the trainer.state.iteration for the global_step, each time
# evaluator metrics are plotted on ClearML.
clearml_logger.attach_output_handler(
evaluator,
event_name=Events.EPOCH_COMPLETED,
tag="validation",
metrics=["nll", "accuracy"],
global_step_transform=global_step_transform
)
Another example where the State Attributes ``trainer.state.alpha`` and ``trainer.state.beta``
are also logged along with the NLL and Accuracy after each iteration:
.. code-block:: python
clearml_logger.attach(
trainer,
log_handler=OutputHandler(
tag="training",
metric_names=["nll", "accuracy"],
state_attributes=["alpha", "beta"],
),
event_name=Events.ITERATION_COMPLETED
)
Example of `global_step_transform`
.. code-block:: python
def global_step_transform(engine, event_name):
return engine.state.get_event_attrib_value(event_name)
.. versionchanged:: 0.4.7
accepts an optional list of `state_attributes`
"""
def __init__(
self,
tag: str,
metric_names: Optional[List[str]] = None,
output_transform: Optional[Callable] = None,
global_step_transform: Optional[Callable[[Engine, Union[str, Events]], int]] = None,
state_attributes: Optional[List[str]] = None,
):
super(OutputHandler, self).__init__(
tag, metric_names, output_transform, global_step_transform, state_attributes
)
def __call__(self, engine: Engine, logger: ClearMLLogger, event_name: Union[str, Events]) -> None:
if not isinstance(logger, ClearMLLogger):
raise RuntimeError("Handler OutputHandler works only with ClearMLLogger")
metrics = self._setup_output_metrics_state_attrs(engine)
global_step = self.global_step_transform(engine, event_name)
if not isinstance(global_step, int):
raise TypeError(
f"global_step must be int, got {type(global_step)}."
" Please check the output of global_step_transform."
)
for key, value in metrics.items():
if len(key) == 2:
logger.clearml_logger.report_scalar(title=key[0], series=key[1], iteration=global_step, value=value)
elif len(key) == 3:
logger.clearml_logger.report_scalar(
title=f"{key[0]}/{key[1]}", series=key[2], iteration=global_step, value=value
)
class OptimizerParamsHandler(BaseOptimizerParamsHandler):
"""Helper handler to log optimizer parameters
Args:
optimizer: torch optimizer or any object with attribute ``param_groups``
as a sequence.
param_name: parameter name
tag: common title for all produced plots. For example, "generator"
Examples:
.. code-block:: python
from ignite.handlers.clearml_logger import *
# Create a logger
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration
clearml_logger.attach(
trainer,
log_handler=OptimizerParamsHandler(optimizer),
event_name=Events.ITERATION_STARTED
)
# or equivalently
clearml_logger.attach_opt_params_handler(
trainer,
event_name=Events.ITERATION_STARTED,
optimizer=optimizer
)
"""
def __init__(self, optimizer: Optimizer, param_name: str = "lr", tag: Optional[str] = None):
super(OptimizerParamsHandler, self).__init__(optimizer, param_name, tag)
def __call__(self, engine: Engine, logger: ClearMLLogger, event_name: Union[str, Events]) -> None:
if not isinstance(logger, ClearMLLogger):
raise RuntimeError("Handler OptimizerParamsHandler works only with ClearMLLogger")
global_step = engine.state.get_event_attrib_value(event_name)
tag_prefix = f"{self.tag}/" if self.tag else ""
params = {
str(i): float(param_group[self.param_name]) for i, param_group in enumerate(self.optimizer.param_groups)
}
for k, v in params.items():
logger.clearml_logger.report_scalar(
title=f"{tag_prefix}{self.param_name}", series=k, value=v, iteration=global_step
)
class WeightsScalarHandler(BaseWeightsScalarHandler):
"""Helper handler to log model's weights as scalars.
Handler, upon construction, iterates over named parameters of the model and keep
reference to ones permitted by `whitelist`. Then at every call, applies
reduction function to each parameter, produces a scalar and logs it.
Args:
model: model to log weights
reduction: function to reduce parameters into scalar
tag: common title for all produced plots. For example, "generator"
whitelist: specific weights to log. Should be list of model's submodules
or parameters names, or a callable which gets weight along with its name
and determines if it should be logged. Names should be fully-qualified.
For more information please refer to `PyTorch docs
<https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.get_submodule>`_.
If not given, all of model's weights are logged.
Examples:
.. code-block:: python
from ignite.handlers.clearml_logger import *
# Create a logger
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Attach the logger to the trainer to log model's weights norm after each iteration
clearml_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=WeightsScalarHandler(model, reduction=torch.norm)
)
.. code-block:: python
from ignite.handlers.clearml_logger import *
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Log only `fc` weights
clearml_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=WeightsScalarHandler(
model,
whitelist=['fc']
)
)
.. code-block:: python
from ignite.handlers.clearml_logger import *
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Log weights which have `bias` in their names
def has_bias_in_name(n, p):
return 'bias' in n
clearml_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=WeightsScalarHandler(model, whitelist=has_bias_in_name)
)
.. versionchanged:: 0.4.9
optional argument `whitelist` added.
"""
def __call__(self, engine: Engine, logger: ClearMLLogger, event_name: Union[str, Events]) -> None:
if not isinstance(logger, ClearMLLogger):
raise RuntimeError("Handler WeightsScalarHandler works only with ClearMLLogger")
global_step = engine.state.get_event_attrib_value(event_name)
tag_prefix = f"{self.tag}/" if self.tag else ""
for name, p in self.weights:
title_name, _, series_name = name.partition(".")
logger.clearml_logger.report_scalar(
title=f"{tag_prefix}weights_{self.reduction.__name__}/{title_name}",
series=series_name,
value=self.reduction(p.data),
iteration=global_step,
)
class WeightsHistHandler(BaseWeightsHandler):
"""Helper handler to log model's weights as histograms.
Args:
model: model to log weights
tag: common title for all produced plots. For example, 'generator'
whitelist: specific weights to log. Should be list of model's submodules
or parameters names, or a callable which gets weight along with its name
and determines if it should be logged. Names should be fully-qualified.
For more information please refer to `PyTorch docs
<https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.get_submodule>`_.
If not given, all of model's weights are logged.
Examples:
.. code-block:: python
from ignite.handlers.clearml_logger import *
# Create a logger
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Attach the logger to the trainer to log model's weights norm after each iteration
clearml_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=WeightsHistHandler(model)
)
.. code-block:: python
from ignite.handlers.clearml_logger import *
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Log weights of `fc` layer
weights = ['fc']
# Attach the logger to the trainer to log weights norm after each iteration
clearml_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=WeightsHistHandler(model, whitelist=weights)
)
.. code-block:: python
from ignite.handlers.clearml_logger import *
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Log weights which name include 'conv'.
weight_selector = lambda name, p: 'conv' in name
# Attach the logger to the trainer to log weights norm after each iteration
clearml_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=WeightsHistHandler(model, whitelist=weight_selector)
)
.. versionchanged:: 0.4.9
optional argument `whitelist` added.
"""
def __call__(self, engine: Engine, logger: ClearMLLogger, event_name: Union[str, Events]) -> None:
if not isinstance(logger, ClearMLLogger):
raise RuntimeError("Handler 'WeightsHistHandler' works only with ClearMLLogger")
global_step = engine.state.get_event_attrib_value(event_name)
tag_prefix = f"{self.tag}/" if self.tag else ""
for name, p in self.weights:
title_name, _, series_name = name.partition(".")
logger.grad_helper.add_histogram(
title=f"{tag_prefix}weights_{title_name}",
series=series_name,
step=global_step,
hist_data=p.data.cpu().numpy(),
)
class GradsScalarHandler(BaseWeightsScalarHandler):
"""Helper handler to log model's gradients as scalars.
Handler, upon construction, iterates over named parameters of the model and keep
reference to ones permitted by the `whitelist`. Then at every call, applies
reduction function to each parameter's gradient, produces a scalar and logs it.
Args:
model: model to log weights
reduction: function to reduce parameters into scalar
tag: common title for all produced plots. For example, "generator"
whitelist: specific gradients to log. Should be list of model's submodules
or parameters names, or a callable which gets weight along with its name
and determines if its gradient should be logged. Names should be
fully-qualified. For more information please refer to `PyTorch docs
<https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.get_submodule>`_.
If not given, all of model's gradients are logged.
Examples:
.. code-block:: python
from ignite.handlers.clearml_logger import *
# Create a logger
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Attach the logger to the trainer to log model's weights norm after each iteration
clearml_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=GradsScalarHandler(model, reduction=torch.norm)
)
.. code-block:: python
from ignite.handlers.clearml_logger import *
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Log gradient of `base`
clearml_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=GradsScalarHandler(
model,
reduction=torch.norm,
whitelist=['base']
)
)
.. code-block:: python
from ignite.handlers.clearml_logger import *
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Log gradient of weights which belong to a `fc` layer
def is_in_fc_layer(n, p):
return 'fc' in n
clearml_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=GradsScalarHandler(model, whitelist=is_in_fc_layer)
)
.. versionchanged:: 0.4.9
optional argument `whitelist` added.
"""
def __call__(self, engine: Engine, logger: ClearMLLogger, event_name: Union[str, Events]) -> None:
if not isinstance(logger, ClearMLLogger):
raise RuntimeError("Handler GradsScalarHandler works only with ClearMLLogger")
global_step = engine.state.get_event_attrib_value(event_name)
tag_prefix = f"{self.tag}/" if self.tag else ""
for name, p in self.weights:
if p.grad is None:
continue
title_name, _, series_name = name.partition(".")
logger.clearml_logger.report_scalar(
title=f"{tag_prefix}grads_{self.reduction.__name__}/{title_name}",
series=series_name,
value=self.reduction(p.grad),
iteration=global_step,
)
class GradsHistHandler(BaseWeightsHandler):
"""Helper handler to log model's gradients as histograms.
Args:
model: model to log weights
tag: common title for all produced plots. For example, 'generator'
whitelist: specific gradients to log. Should be list of model's submodules
or parameters names, or a callable which gets weight along with its name
and determines if its gradient should be logged. Names should be
fully-qualified. For more information please refer to `PyTorch docs
<https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.get_submodule>`_.
If not given, all of model's gradients are logged.
Examples:
.. code-block:: python
from ignite.handlers.clearml_logger import *
# Create a logger
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Attach the logger to the trainer to log model's weights norm after each iteration
clearml_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=GradsHistHandler(model)
)
.. code-block:: python
from ignite.handlers.clearml_logger import *
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Log gradient of `fc.bias`
clearml_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=GradsHistHandler(model, whitelist=['fc.bias'])
)
.. code-block:: python
from ignite.handlers.clearml_logger import *
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
# Log gradient of weights which have shape (2, 1)
def has_shape_2_1(n, p):
return p.shape == (2,1)
clearml_logger.attach(
trainer,
event_name=Events.ITERATION_COMPLETED,
log_handler=GradsHistHandler(model, whitelist=has_shape_2_1)
)
.. versionchanged:: 0.4.9
optional argument `whitelist` added.
"""
def __call__(self, engine: Engine, logger: ClearMLLogger, event_name: Union[str, Events]) -> None:
if not isinstance(logger, ClearMLLogger):
raise RuntimeError("Handler 'GradsHistHandler' works only with ClearMLLogger")
global_step = engine.state.get_event_attrib_value(event_name)
tag_prefix = f"{self.tag}/" if self.tag else ""
for name, p in self.weights:
if p.grad is None:
continue
title_name, _, series_name = name.partition(".")
logger.grad_helper.add_histogram(
title=f"{tag_prefix}grads_{title_name}",
series=series_name,
step=global_step,
hist_data=p.grad.cpu().numpy(),
)
class ClearMLSaver(DiskSaver):
"""
Handler that saves input checkpoint as ClearML artifacts
Args:
logger: An instance of :class:`~ignite.handlers.clearml_logger.ClearMLLogger`,
ensuring a valid ClearML ``Task`` has been initialized. If not provided, and a ClearML Task
has not been manually initialized, a runtime error will be raised.
output_uri: The default location for output models and other artifacts uploaded by ClearML. For
more information, see ``clearml.Task.init``.
dirname: Directory path where the checkpoint will be saved. If not provided, a temporary
directory will be created.
Examples:
.. code-block:: python
from ignite.handlers.clearml_logger import *
from ignite.handlers import Checkpoint
clearml_logger = ClearMLLogger(
project_name="pytorch-ignite-integration",
task_name="cnn-mnist"
)
to_save = {"model": model}
handler = Checkpoint(
to_save,
ClearMLSaver(),
n_saved=1,
score_function=lambda e: 123,
score_name="acc",
filename_prefix="best",
global_step_transform=global_step_from_engine(trainer)
)
validation_evaluator.add_event_handler(Events.EVENT_COMPLETED, handler)
"""
def __init__(
self,
logger: Optional[ClearMLLogger] = None,
output_uri: Optional[str] = None,
dirname: Optional[str] = None,
*args: Any,
**kwargs: Any,
):
self._setup_check_clearml(logger, output_uri)
if not dirname:
dirname = ""
if idist.get_rank() == 0:
dirname = tempfile.mkdtemp(prefix=f"ignite_checkpoints_{datetime.now().strftime('%Y_%m_%d_%H_%M_%S_')}")
if idist.get_world_size() > 1:
dirname = idist.all_gather(dirname)[0] # type: ignore[index, assignment]
warnings.warn(f"ClearMLSaver created a temporary checkpoints directory: {dirname}")
idist.barrier()
# Let's set non-atomic tmp dir saving behaviour
if "atomic" not in kwargs:
kwargs["atomic"] = False
self._checkpoint_slots: DefaultDict[Union[str, Tuple[str, str]], List[Any]] = defaultdict(list)
super(ClearMLSaver, self).__init__(dirname=dirname, *args, **kwargs) # type: ignore[misc]
@idist.one_rank_only()
def _setup_check_clearml(self, logger: ClearMLLogger, output_uri: str) -> None:
try:
from clearml import Task
except ImportError:
try:
# Backwards-compatibility for legacy Trains SDK
from trains import Task
except ImportError:
raise ModuleNotFoundError(
"This contrib module requires clearml to be installed. "
"You may install clearml using: \n pip install clearml \n"
)
if logger and not isinstance(logger, ClearMLLogger):
raise TypeError("logger must be an instance of ClearMLLogger")
self._task = Task.current_task()
if not self._task:
raise RuntimeError(
"ClearMLSaver requires a ClearML Task to be initialized. "
"Please use the `logger` argument or call `clearml.Task.init()`."
)
if output_uri:
self._task.output_uri = output_uri
class _CallbacksContext:
def __init__(
self,
callback_type: Type[Enum],
slots: List,
checkpoint_key: str,
filename: str,
basename: str,
metadata: Optional[Mapping] = None,
) -> None:
self._callback_type = callback_type
self._slots = slots
self._checkpoint_key = str(checkpoint_key)
self._filename = filename
self._basename = basename
self._metadata = metadata
def pre_callback(self, action: str, model_info: Any) -> Any:
if action != self._callback_type.save: # type: ignore[attr-defined]
return model_info
try:
slot = self._slots.index(None)
self._slots[slot] = model_info.upload_filename
except ValueError:
self._slots.append(model_info.upload_filename)
slot = len(self._slots) - 1
model_info.upload_filename = f"{self._basename}_{slot}{os.path.splitext(self._filename)[1]}"
model_info.local_model_id = f"{self._checkpoint_key}:{model_info.upload_filename}"
return model_info
def post_callback(self, action: str, model_info: Any) -> Any:
if action != self._callback_type.save: # type: ignore[attr-defined]
return model_info
model_info.model.name = f"{model_info.task.name}: {self._filename}"
prefix = "Checkpoint Metadata: "
metadata_items = ", ".join(f"{k}={v}" for k, v in self._metadata.items()) if self._metadata else "none"
metadata = f"{prefix}{metadata_items}"
comment = "\n".join(
metadata if line.startswith(prefix) else line for line in (model_info.model.comment or "").split("\n")
)
if prefix not in comment:
comment += "\n" + metadata
model_info.model.comment = comment
return model_info
def __call__(self, checkpoint: Mapping, filename: str, metadata: Optional[Mapping] = None) -> None:
try:
from clearml.binding.frameworks import WeightsFileHandler
except ImportError:
try:
# Backwards-compatibility for legacy Trains SDK
from trains.binding.frameworks import WeightsFileHandler
except ImportError:
raise ModuleNotFoundError(
"This contrib module requires clearml to be installed. "
"You may install clearml using: \n pip install clearml \n"
)
try:
basename = metadata["basename"] # type: ignore[index]
except (TypeError, KeyError):
warnings.warn("Checkpoint metadata missing or basename cannot be found")
basename = "checkpoint"
checkpoint_key = (str(self.dirname), basename)
cb_context = self._CallbacksContext(
callback_type=WeightsFileHandler.CallbackType,
slots=self._checkpoint_slots[checkpoint_key],
checkpoint_key=str(checkpoint_key),
filename=filename,
basename=basename,
metadata=metadata,
)
pre_cb_id = WeightsFileHandler.add_pre_callback(cb_context.pre_callback)
post_cb_id = WeightsFileHandler.add_post_callback(cb_context.post_callback)
try:
super(ClearMLSaver, self).__call__(checkpoint, filename, metadata)
finally:
WeightsFileHandler.remove_pre_callback(pre_cb_id)
WeightsFileHandler.remove_post_callback(post_cb_id)
@idist.one_rank_only()
def get_local_copy(self, filename: str) -> Optional[str]:
"""Get artifact local copy.
.. warning::
In distributed configuration this method should be called on rank 0 process.
Args:
filename: artifact name.
Returns:
a local path to a downloaded copy of the artifact
"""
artifact = self._task.artifacts.get(filename)
if artifact:
return artifact.get_local_copy()
self._task.get_logger().report_text(f"Can not find artifact {filename}")
return None
@idist.one_rank_only()
def remove(self, filename: str) -> None:
super(ClearMLSaver, self).remove(filename)
for slots in self._checkpoint_slots.values():
try:
slots[slots.index(filename)] = None
except ValueError:
pass
else:
break
|