1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
|
# coding: utf-8
import contextlib
import logging
import tempfile
import warnings
from math import ceil
from pathlib import Path
from typing import Any, Callable, Dict, List, Mapping, Optional, Union
import torch
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
import ignite.distributed as idist
from ignite.engine import Engine, Events
from ignite.handlers import Checkpoint
from ignite.handlers.param_scheduler import LRScheduler, ParamGroupScheduler, PiecewiseLinear
class FastaiLRFinder:
"""Learning rate finder handler for supervised trainers.
While attached, the handler increases the learning rate in between two
boundaries in a linear or exponential manner. It provides valuable
information on how well the network can be trained over a range of learning
rates and what can be an optimal learning rate.
Examples:
.. code-block:: python
from ignite.handlers import FastaiLRFinder
trainer = ...
model = ...
optimizer = ...
lr_finder = FastaiLRFinder()
to_save = {"model": model, "optimizer": optimizer}
with lr_finder.attach(trainer, to_save=to_save) as trainer_with_lr_finder:
trainer_with_lr_finder.run(dataloader)
# Get lr_finder results
lr_finder.get_results()
# Plot lr_finder results (requires matplotlib)
lr_finder.plot()
# get lr_finder suggestion for lr
lr_finder.lr_suggestion()
Note:
When context manager is exited all LR finder's handlers are removed.
Note:
Please, also keep in mind that all other handlers attached the trainer will be executed during LR finder's run.
Note:
This class may require `matplotlib` package to be installed to plot learning rate range test:
.. code-block:: bash
pip install matplotlib
References:
Cyclical Learning Rates for Training Neural Networks:
https://arxiv.org/abs/1506.01186
fastai/lr_find: https://github.com/fastai/fastai
.. versionadded:: 0.4.6
"""
_lr_schedule: Union[LRScheduler, PiecewiseLinear, ParamGroupScheduler]
def __init__(self) -> None:
self._diverge_flag = False
self._history: Dict[str, List[Any]] = {}
self._best_loss = None
self.logger = logging.getLogger(__name__ + "." + self.__class__.__name__)
def _run(
self,
trainer: Engine,
optimizer: Optimizer,
output_transform: Callable,
num_iter: int,
start_lrs: List[float],
end_lrs: List[float],
step_mode: str,
smooth_f: float,
diverge_th: float,
) -> None:
self._history = {"lr": [], "loss": []}
self._best_loss = None
self._diverge_flag = False
# attach LRScheduler to trainer.
if num_iter is None:
num_iter = trainer.state.epoch_length * trainer.state.max_epochs
else:
max_iter = trainer.state.epoch_length * trainer.state.max_epochs # type: ignore[operator]
if max_iter < num_iter:
max_iter = num_iter
trainer.state.max_epochs = ceil(num_iter / trainer.state.epoch_length) # type: ignore[operator]
if not trainer.has_event_handler(self._reached_num_iterations):
trainer.add_event_handler(Events.ITERATION_COMPLETED, self._reached_num_iterations, num_iter)
# attach loss and lr logging
if not trainer.has_event_handler(self._log_lr_and_loss):
trainer.add_event_handler(
Events.ITERATION_COMPLETED, self._log_lr_and_loss, output_transform, smooth_f, diverge_th
)
self.logger.debug(f"Running LR finder for {num_iter} iterations")
# Initialize the proper learning rate policy
if step_mode.lower() == "exp":
self._lr_schedule = LRScheduler(_ExponentialLR(optimizer, start_lrs, end_lrs, num_iter))
else:
if len(start_lrs) == 1:
self._lr_schedule = PiecewiseLinear(
optimizer,
param_name="lr",
milestones_values=[(0, start_lrs[0]), (num_iter, end_lrs[0])],
)
else:
self._lr_schedule = ParamGroupScheduler(
[
PiecewiseLinear(
optimizer,
param_name="lr",
milestones_values=[(0, start_lrs[i]), (num_iter, end_lrs[i])],
param_group_index=i,
)
for i in range(len(optimizer.param_groups))
]
)
if not trainer.has_event_handler(self._lr_schedule):
trainer.add_event_handler(Events.ITERATION_COMPLETED, self._lr_schedule, num_iter)
def _reset(self, trainer: Engine) -> None:
self.logger.debug("Completed LR finder run")
trainer.remove_event_handler(self._lr_schedule, Events.ITERATION_COMPLETED)
trainer.remove_event_handler(self._log_lr_and_loss, Events.ITERATION_COMPLETED)
trainer.remove_event_handler(self._reached_num_iterations, Events.ITERATION_COMPLETED)
def _log_lr_and_loss(self, trainer: Engine, output_transform: Callable, smooth_f: float, diverge_th: float) -> None:
output = trainer.state.output
loss = output_transform(output)
if not isinstance(loss, float):
if isinstance(loss, torch.Tensor):
if (loss.ndimension() == 0) or (loss.ndimension() == 1 and len(loss) == 1):
loss = loss.item()
else:
raise ValueError(
"if output of the engine is torch.Tensor, then "
"it must be 0d torch.Tensor or 1d torch.Tensor with 1 element, "
f"but got torch.Tensor of shape {loss.shape}."
)
else:
raise TypeError(
"output of the engine should be of type float or 0d torch.Tensor "
"or 1d torch.Tensor with 1 element, "
f"but got output of type {type(loss).__name__}"
"You may wish to use the output_transform kwarg with the attach method e.g.\n"
"""
lr_finder = FastaiLRFinder()
with lr_finder.attach(trainer, output_transform=lambda x:x["train_loss"]) as trainer_with_lr_finder:
trainer_with_lr_finder.run(dataloader_train)
"""
)
loss = idist.all_reduce(loss)
lr = self._lr_schedule.get_param()
self._history["lr"].append(lr)
if trainer.state.iteration == 1:
self._best_loss = loss
else:
if smooth_f > 0:
loss = smooth_f * loss + (1 - smooth_f) * self._history["loss"][-1]
if loss < self._best_loss:
self._best_loss = loss
self._history["loss"].append(loss)
# Check if the loss has diverged; if it has, stop the trainer
if self._history["loss"][-1] > diverge_th * self._best_loss: # type: ignore[operator]
self._diverge_flag = True
self.logger.info("Stopping early, the loss has diverged")
trainer.terminate()
def _reached_num_iterations(self, trainer: Engine, num_iter: int) -> None:
if trainer.state.iteration > num_iter:
trainer.terminate()
def _warning(self, _: Any) -> None:
if not self._diverge_flag:
warnings.warn(
"Run completed without loss diverging, increase end_lr, decrease diverge_th or look"
" at lr_finder.plot()",
UserWarning,
)
def _detach(self, trainer: Engine) -> None:
"""
Detaches lr_finder from trainer.
Args:
trainer: the trainer to detach form.
"""
if trainer.has_event_handler(self._run, Events.STARTED):
trainer.remove_event_handler(self._run, Events.STARTED)
if trainer.has_event_handler(self._warning, Events.COMPLETED):
trainer.remove_event_handler(self._warning, Events.COMPLETED)
if trainer.has_event_handler(self._reset, Events.COMPLETED):
trainer.remove_event_handler(self._reset, Events.COMPLETED)
def get_results(self) -> Dict[str, List[Any]]:
"""
Returns:
Dictionary with loss and lr logs from the previous run
"""
return self._history
def plot(
self,
skip_start: int = 10,
skip_end: int = 5,
log_lr: bool = True,
display_suggestion: bool = True,
ax: Optional[Any] = None,
**kwargs: Any,
) -> None:
"""Plots the learning rate range test.
This method requires ``matplotlib`` package to be installed:
.. code-block:: bash
pip install matplotlib
Args:
skip_start: number of batches to trim from the start.
Default: 10.
skip_end: number of batches to trim from the start.
Default: 5.
log_lr: True to plot the learning rate in a logarithmic
scale; otherwise, plotted in a linear scale. Default: True.
display_suggestion: if True, red dot shows the suggested learning rate.
ax: Pre-existing axes for the plot. Default: None.
kwargs: optional kwargs passed to ``plt.subplots`` if ``ax`` is not provided.
.. code-block:: python
ax = lr_finder.plot(skip_end=0)
ax.figure.savefig("output.jpg")
"""
try:
from matplotlib import pyplot as plt
except ImportError:
raise ModuleNotFoundError(
"This method requires matplotlib to be installed. "
"Please install it with command: \n pip install matplotlib"
)
if not self._history:
raise RuntimeError("learning rate finder didn't run yet so results can't be plotted")
if skip_start < 0:
raise ValueError("skip_start cannot be negative")
if skip_end < 0:
raise ValueError("skip_end cannot be negative")
# Get the data to plot from the history dictionary.
lrs = self._history["lr"]
losses = self._history["loss"]
num_groups = len(lrs[0]) if isinstance(lrs[0], list) else 1
legends = [f"suggested lr for param_groups {i}" for i in range(num_groups)]
if ax is None:
fig, ax = plt.subplots(**kwargs)
# Check to show the suggested learning rate
if display_suggestion:
sug_lr = self.lr_suggestion()
idx = self._history["lr"].index(sug_lr)
if skip_start >= idx:
warnings.warn(
"skip_start is larger than the suggested LR found"
" and it will not be visible on the plot. Please, make the value smaller.",
UserWarning,
)
corresponding_loss = self._history["loss"][int(idx)]
# Check if optimizer has multiple param_groups
if not isinstance(sug_lr, list):
sug_lr = [
sug_lr,
]
for lr in sug_lr:
ax.scatter(
lr, corresponding_loss, color="red" if len(sug_lr) == 1 else None, s=75, marker="o", zorder=3
)
# handle skip_end=0 properly
if skip_end == 0:
lrs = lrs[skip_start:]
losses = losses[skip_start:]
else:
lrs = lrs[skip_start:-skip_end]
losses = losses[skip_start:-skip_end]
plt.legend(legends)
# Plot loss as a function of the learning rate
ax.plot(lrs, losses)
if log_lr:
ax.set_xscale("log")
lr_min = min(lrs[0]) if isinstance(lrs[0], list) else lrs[0]
lr_max = max(lrs[-1]) if isinstance(lrs[-1], list) else lrs[-1]
ax.set_xlim([lr_min, lr_max])
ax.set_xlabel("Learning rate")
ax.set_ylabel("Loss")
plt.show()
return ax
def lr_suggestion(self) -> Any:
"""
Returns:
Learning rate at the minimum numerical gradient
(ignoring the increasing part of the curve)
"""
if not self._history:
raise RuntimeError("learning rate finder didn't run yet so lr_suggestion can't be returned")
loss = self._history["loss"]
min_loss_idx = torch.tensor(loss).argmin()
# Ignore the increasing part of the curve
decreasing_losses = self._history["loss"][: int(min_loss_idx.item()) + 1]
if len(decreasing_losses) < 3:
raise RuntimeError(
"FastaiLRFinder got unexpected curve shape, the curve should be somehow U-shaped, "
"please decrease start_lr or increase end_lr to resolve this issue."
)
losses = torch.tensor(decreasing_losses)
grads = torch.tensor([0.5 * (losses[i + 1] - losses[i - 1]) for i in range(1, len(losses) - 1)])
min_grad_idx = grads.argmin() + 1
return self._history["lr"][int(min_grad_idx)]
def apply_suggested_lr(self, optimizer: Optimizer) -> None:
"""
Applying the suggested learning rate(s) on the given optimizer.
Args:
optimizer: the optimizer to apply the suggested learning rate(s) on.
Note:
The given optimizer must be the same as the one we before found the suggested learning rate for.
"""
sug_lr = self.lr_suggestion()
if not isinstance(sug_lr, list):
sug_lr = [
sug_lr,
]
if len(sug_lr) != len(optimizer.param_groups):
raise RuntimeError(
"The number of parameter groups does not match between "
"given optimizer and the one used for estimating the "
f"learning rate: {len(sug_lr)} vs {len(optimizer.param_groups)}"
)
for i, lr in enumerate(sug_lr):
optimizer.param_groups[i]["lr"] = lr
@contextlib.contextmanager
def attach(
self,
trainer: Engine,
to_save: Mapping,
output_transform: Callable = lambda output: output,
num_iter: Optional[int] = None,
start_lr: Optional[Union[float, List[float]]] = None,
end_lr: Optional[Union[float, List[float]]] = 10.0,
step_mode: str = "exp",
smooth_f: float = 0.05,
diverge_th: float = 5.0,
) -> Any:
"""Attaches lr_finder to a given trainer. It also resets model and optimizer at the end of the run.
Args:
trainer: lr_finder is attached to this trainer. Please, keep in mind that all attached handlers
will be executed.
to_save: dictionary with optimizer and other objects that needs to be restored after running
the LR finder. For example, ``to_save={'optimizer': optimizer, 'model': model}``.
It should contain "optimizer" key for the optimizer.
Also all objects should implement ``state_dict`` and ``load_state_dict`` methods.
output_transform: function that transforms the trainer's ``state.output`` after each
iteration. It must return the loss of that iteration.
num_iter: number of iterations for lr schedule between base lr and end_lr. Default, it will
run for ``trainer.state.epoch_length * trainer.state.max_epochs``.
start_lr: lower bound for lr search. Default, Learning Rate specified with the optimizer.
end_lr: upper bound for lr search. Default, 10.0.
step_mode: "exp" or "linear", which way should the lr be increased from ``start_lr``
to ``end_lr``. Default, "exp".
smooth_f: loss smoothing factor in range ``[0, 1)``. Default, 0.05
diverge_th: Used for stopping the search when ``current loss > diverge_th * best_loss``.
Default, 5.0.
Returns:
trainer_with_lr_finder (trainer used for finding the lr)
Examples:
.. code-block:: python
to_save = {"model": model, "optimizer": optimizer}
with lr_finder.attach(trainer, to_save=to_save) as trainer_with_lr_finder:
trainer_with_lr_finder.run(dataloader)
Note:
lr_finder cannot be attached to more than one trainer at a time.
"""
if not isinstance(to_save, Mapping):
raise TypeError(f"Argument to_save should be a mapping, but given {type(to_save)}")
Checkpoint._check_objects(to_save, "state_dict")
Checkpoint._check_objects(to_save, "load_state_dict")
if "optimizer" not in to_save:
raise ValueError("Mapping to_save should contain 'optimizer' key")
if not isinstance(to_save["optimizer"], torch.optim.Optimizer):
raise TypeError(
f"Object to_save['optimizer'] should be torch optimizer, but given {type(to_save['optimizer'])}"
)
if smooth_f < 0 or smooth_f >= 1:
raise ValueError("smooth_f is outside the range [0, 1]")
if diverge_th < 1:
raise ValueError("diverge_th should be larger than 1")
if step_mode not in ["exp", "linear"]:
raise ValueError(f"step_mode should be 'exp' or 'linear', but given {step_mode}")
if num_iter is not None:
if not isinstance(num_iter, int):
raise TypeError(f"if provided, num_iter should be an integer, but give {num_iter}")
if num_iter <= 0:
raise ValueError(f"if provided, num_iter should be positive, but give {num_iter}")
optimizer = to_save["optimizer"]
if start_lr is None:
start_lrs = [pg["lr"] for pg in optimizer.param_groups]
elif isinstance(start_lr, float):
start_lrs = [start_lr] * len(optimizer.param_groups)
elif isinstance(start_lr, list):
if len(start_lr) != len(optimizer.param_groups):
raise ValueError(
"Number of values of start_lr should be equal to optimizer values."
f"start_lr values:{len(start_lr)} optimizer values: {len(optimizer.param_groups)}"
)
start_lrs = start_lr
else:
raise TypeError(f"start_lr should be a float or list of floats, but given {type(start_lr)}")
if isinstance(end_lr, float):
end_lrs = [end_lr] * len(optimizer.param_groups)
elif isinstance(end_lr, list):
if len(end_lr) != len(optimizer.param_groups):
raise ValueError(
"Number of values of end_lr should be equal to optimizer values."
f"end_lr values:{len(end_lr)} optimizer values: {len(optimizer.param_groups)}"
)
end_lrs = end_lr
else:
raise TypeError(f"end_lr should be a float or list of floats, but given {type(end_lr)}")
for start, end in zip(start_lrs, end_lrs):
if start >= end:
raise ValueError(f"start_lr must be less than end_lr, start_lr={start_lr} vs end_lr={end_lr}")
# store to_save
with tempfile.TemporaryDirectory() as tmpdirname:
obj = {k: o.state_dict() for k, o in to_save.items()}
# add trainer
obj["trainer"] = trainer.state_dict()
cache_filepath = Path(tmpdirname) / "ignite_lr_finder_cache.pt"
torch.save(obj, cache_filepath.as_posix())
# Attach handlers
if not trainer.has_event_handler(self._run):
trainer.add_event_handler(
Events.STARTED,
self._run,
optimizer,
output_transform,
num_iter,
start_lrs,
end_lrs,
step_mode,
smooth_f,
diverge_th,
)
if not trainer.has_event_handler(self._warning):
trainer.add_event_handler(Events.COMPLETED, self._warning)
if not trainer.has_event_handler(self._reset):
trainer.add_event_handler(Events.COMPLETED, self._reset)
yield trainer
self._detach(trainer)
# restore to_save and reset trainer's state
obj = torch.load(cache_filepath.as_posix())
trainer.load_state_dict(obj["trainer"])
for k, o in obj.items():
if k in to_save:
to_save[k].load_state_dict(o)
class _ExponentialLR(_LRScheduler):
"""Exponentially increases the learning rate between two boundaries over a number of
iterations.
Args:
optimizer: wrapped optimizer.
start_lrs: the initial learning rate for parameter groups.
end_lrs: the final learning rate for parameter groups.
num_iter: the number of iterations over which the test
occurs. Default: 100.
last_epoch: the index of last epoch. Default: -1.
"""
def __init__(
self, optimizer: Optimizer, start_lrs: List[float], end_lrs: List[float], num_iter: int, last_epoch: int = -1
):
self.end_lrs = end_lrs
self.num_iter = num_iter
super(_ExponentialLR, self).__init__(optimizer, last_epoch)
# override base_lrs
self.base_lrs = start_lrs
def get_lr(self) -> List[float]:
curr_iter = self.last_epoch + 1
r = curr_iter / self.num_iter
return [base_lr * (end_lr / base_lr) ** r for end_lr, base_lr in zip(self.end_lrs, self.base_lrs)]
|