File: neptune_logger.py

package info (click to toggle)
pytorch-ignite 0.5.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,712 kB
  • sloc: python: 46,874; sh: 376; makefile: 27
file content (706 lines) | stat: -rw-r--r-- 27,366 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
"""Neptune logger and its helper handlers."""

import tempfile
import warnings
from typing import Any, Callable, List, Mapping, Optional, Union

import torch
from torch.optim import Optimizer

import ignite.distributed as idist

from ignite.engine import Engine, Events
from ignite.handlers.base_logger import (
    BaseLogger,
    BaseOptimizerParamsHandler,
    BaseOutputHandler,
    BaseWeightsScalarHandler,
)
from ignite.handlers.checkpoint import BaseSaveHandler
from ignite.handlers.utils import global_step_from_engine  # noqa

__all__ = [
    "NeptuneLogger",
    "NeptuneSaver",
    "OptimizerParamsHandler",
    "OutputHandler",
    "WeightsScalarHandler",
    "GradsScalarHandler",
    "global_step_from_engine",
]

_INTEGRATION_VERSION_KEY = "source_code/integrations/neptune-pytorch-ignite"


class NeptuneLogger(BaseLogger):
    """
    `Neptune <https://neptune.ai/>`_ handler to log metrics, model/optimizer parameters and gradients during training
    and validation. It can also log model checkpoints to Neptune.

    .. code-block:: bash

        pip install neptune

    Args:
        api_token: Neptune API token, found on https://neptune.ai -> User menu -> "Get your API token".
           If None, the value of the NEPTUNE_API_TOKEN environment variable is used. To keep your token
           secure, you should set it to the environment variable rather than including it in your code.
        project: Name of a Neptune project, in the form "workspace-name/project-name".
           For example "tom/mnist-classification".
           If None, the value of the NEPTUNE_PROJECT environment variable is used.
        **kwargs: Other arguments to be passed to the `init_run()` function.

    Examples:
        .. code-block:: python

            from ignite.handlers.neptune_logger import *

            # Create a logger
            # Note: We are using the API token for anonymous logging. You can pass your own token, or save it as an
            # environment variable and leave out the api_token argument.

            npt_logger = NeptuneLogger(
                api_token="ANONYMOUS",
                project="common/pytorch-ignite-integration",
                name="cnn-mnist",  # Optional,
                tags=["pytorch-ignite", "minst"],  # Optional
            )

            # Attach the logger to the trainer to log training loss at each iteration.
            npt_logger.attach_output_handler(
                trainer,
                event_name=Events.ITERATION_COMPLETED,
                tag="training",
                output_transform=lambda loss: {"loss": loss},
            )

            # Attach the logger to the evaluator on the training dataset and log NLL
            # and accuracy metrics after each epoch.
            # We set up `global_step_transform=global_step_from_engine(trainer)` to take the epoch
            # of the `trainer` instead of `train_evaluator`.
            npt_logger.attach_output_handler(
                train_evaluator,
                event_name=Events.EPOCH_COMPLETED,
                tag="training",
                metric_names=["nll", "accuracy"],
                global_step_transform=global_step_from_engine(trainer),
            )

            # Attach the logger to the evaluator on the validation dataset and log NLL and accuracy metrics after
            # each epoch. We set up `global_step_transform=global_step_from_engine(trainer)` to take the epoch of the
            # `trainer` instead of `evaluator`.
            npt_logger.attach_output_handler(
                evaluator,
                event_name=Events.EPOCH_COMPLETED,
                tag="validation",
                metric_names=["nll", "accuracy"],
                global_step_transform=global_step_from_engine(trainer),
            )

            # Attach the logger to the trainer to log optimizer parameters, such as learning rate at each iteration.
            npt_logger.attach_opt_params_handler(
                trainer,
                event_name=Events.ITERATION_STARTED,
                optimizer=optimizer,
                param_name="lr",  # optional
            )

            # Attach the logger to the trainer to log model's weights norm after each iteration.
            npt_logger.attach(
                trainer,
                event_name=Events.ITERATION_COMPLETED,
                log_handler=WeightsScalarHandler(model),
            )

        Explore runs with Neptune tracking here:
        https://app.neptune.ai/o/common/org/pytorch-ignite-integration/

        You can also save model checkpoints to a Neptune:

        .. code-block:: python

            from ignite.handlers import Checkpoint


            def score_function(engine):
                return engine.state.metrics["accuracy"]


            to_save = {"model": model}
            handler = Checkpoint(
                to_save,
                NeptuneSaver(npt_logger), n_saved=2,
                filename_prefix="best",
                score_function=score_function,
                score_name="validation_accuracy",
                global_step_transform=global_step_from_engine(trainer),
            )
            validation_evaluator.add_event_handler(Events.COMPLETED, handler)

        It is also possible to use the logger as a context manager:

        .. code-block:: python

            from ignite.handlers.neptune_logger import *

            with NeptuneLogger() as npt_logger:
                trainer = Engine(update_fn)
                # Attach the logger to the trainer to log training loss at each iteration
                npt_logger.attach_output_handler(
                    trainer,
                    event_name=Events.ITERATION_COMPLETED,
                    tag="training",
                    output_transform=lambda loss: {"loss": loss},
                )

    """

    def __getattr__(self, attr: Any) -> Any:
        return getattr(self.experiment, attr)

    def __getitem__(self, key: str) -> Any:
        return self.experiment[key]

    def __setitem__(self, key: str, val: Any) -> Any:
        self.experiment[key] = val

    def __init__(self, api_token: Optional[str] = None, project: Optional[str] = None, **kwargs: Any) -> None:
        try:
            try:
                # neptune-client<1.0.0 package structure
                with warnings.catch_warnings():
                    # ignore the deprecation warnings
                    warnings.simplefilter("ignore")
                    import neptune.new as neptune
            except ImportError:
                # neptune>=1.0.0 package structure
                import neptune
        except ImportError:
            raise ModuleNotFoundError(
                "This contrib module requires the Neptune client library to be installed. "
                "Install neptune with the command: \n pip install neptune \n"
            )

        run = neptune.init_run(
            api_token=api_token,
            project=project,
            **kwargs,
        )
        from ignite import __version__

        run[_INTEGRATION_VERSION_KEY] = __version__

        self.experiment = run

    def close(self) -> None:
        self.experiment.stop()

    def _create_output_handler(self, *args: Any, **kwargs: Any) -> "OutputHandler":
        return OutputHandler(*args, **kwargs)

    def _create_opt_params_handler(self, *args: Any, **kwargs: Any) -> "OptimizerParamsHandler":
        return OptimizerParamsHandler(*args, **kwargs)


class OutputHandler(BaseOutputHandler):
    """Helper handler to log engine's output and/or metrics.

    Args:
        tag: common title for all produced plots. For example, "training"
        metric_names: list of metric names to plot or a string "all" to plot all available
            metrics.
        output_transform: output transform function to prepare `engine.state.output` as a number.
            For example, `output_transform = lambda output: output`
            This function can also return a dictionary, e.g `{"loss": loss1, "another_loss": loss2}` to label the plot
            with corresponding keys.
        global_step_transform: global step transform function to output a desired global step.
            Input of the function is `(engine, event_name)`. Output of function should be an integer.
            Default is None, global_step based on attached engine. If provided,
            uses function output as global_step. To setup global step from another engine, please use
            :meth:`~ignite.handlers.neptune_logger.global_step_from_engine`.
        state_attributes: list of attributes of the ``trainer.state`` to plot.

    Examples:
        .. code-block:: python

            from ignite.handlers.neptune_logger import *

            # Create a logger
            # We are using the api_token for the anonymous user neptuner but you can use your own.

            npt_logger = NeptuneLogger(
                api_token="ANONYMOUS",
                project_name="shared/pytorch-ignite-integration",
                experiment_name="cnn-mnist", # Optional,
                params={"max_epochs": 10}, # Optional,
                tags=["pytorch-ignite","minst"] # Optional
            )

            # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after
            # each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch
            # of the `trainer`:
            npt_logger.attach(
                evaluator,
                log_handler=OutputHandler(
                    tag="validation",
                    metric_names=["nll", "accuracy"],
                    global_step_transform=global_step_from_engine(trainer)
                ),
                event_name=Events.EPOCH_COMPLETED
            )
            # or equivalently
            npt_logger.attach_output_handler(
                evaluator,
                event_name=Events.EPOCH_COMPLETED,
                tag="validation",
                metric_names=["nll", "accuracy"],
                global_step_transform=global_step_from_engine(trainer)
            )

        Another example, where model is evaluated every 500 iterations:

        .. code-block:: python

            from ignite.handlers.neptune_logger import *

            @trainer.on(Events.ITERATION_COMPLETED(every=500))
            def evaluate(engine):
                evaluator.run(validation_set, max_epochs=1)

            # We are using the api_token for the anonymous user neptuner but you can use your own.

            npt_logger = NeptuneLogger(
                api_token="ANONYMOUS",
                project_name="shared/pytorch-ignite-integration",
                experiment_name="cnn-mnist", # Optional,
                params={"max_epochs": 10}, # Optional,
                tags=["pytorch-ignite", "minst"] # Optional
            )

            def global_step_transform(*args, **kwargs):
                return trainer.state.iteration

            # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after
            # every 500 iterations. Since evaluator engine does not have access to the training iteration, we
            # provide a global_step_transform to return the trainer.state.iteration for the global_step, each time
            # evaluator metrics are plotted on NeptuneML.

            npt_logger.attach_output_handler(
                evaluator,
                event_name=Events.EPOCH_COMPLETED,
                tag="validation",
                metrics=["nll", "accuracy"],
                global_step_transform=global_step_transform
            )

        Another example where the State Attributes ``trainer.state.alpha`` and ``trainer.state.beta``
        are also logged along with the NLL and Accuracy after each iteration:

        .. code-block:: python

            npt_logger.attach_output_handler(
                trainer,
                event_name=Events.ITERATION_COMPLETED,
                tag="training",
                metrics=["nll", "accuracy"],
                state_attributes=["alpha", "beta"],
            )

        Example of `global_step_transform`:

        .. code-block:: python

            def global_step_transform(engine, event_name):
                return engine.state.get_event_attrib_value(event_name)

    .. versionchanged:: 0.4.7
        accepts an optional list of `state_attributes`
    """

    def __init__(
        self,
        tag: str,
        metric_names: Optional[Union[str, List[str]]] = None,
        output_transform: Optional[Callable] = None,
        global_step_transform: Optional[Callable[[Engine, Union[str, Events]], int]] = None,
        state_attributes: Optional[List[str]] = None,
    ):
        super(OutputHandler, self).__init__(
            tag, metric_names, output_transform, global_step_transform, state_attributes
        )

    def __call__(self, engine: Engine, logger: NeptuneLogger, event_name: Union[str, Events]) -> None:
        if not isinstance(logger, NeptuneLogger):
            raise TypeError("Handler OutputHandler works only with NeptuneLogger")

        metrics = self._setup_output_metrics_state_attrs(engine, key_tuple=False)

        global_step = self.global_step_transform(engine, event_name)

        if not isinstance(global_step, int):
            raise TypeError(
                f"global_step must be int, got {type(global_step)}."
                " Please check the output of global_step_transform."
            )

        for key, value in metrics.items():
            logger[key].append(value, step=global_step)


class OptimizerParamsHandler(BaseOptimizerParamsHandler):
    """Helper handler to log optimizer parameters

    Args:
        optimizer: torch optimizer or any object with attribute ``param_groups``
            as a sequence.
        param_name: parameter name
        tag: common title for all produced plots. For example, "generator"

    Examples:
        .. code-block:: python

            from ignite.handlers.neptune_logger import *

            # Create a logger
            # We are using the api_token for the anonymous user neptuner but you can use your own.

            npt_logger = NeptuneLogger(
                api_token="ANONYMOUS",
                project_name="shared/pytorch-ignite-integration",
                experiment_name="cnn-mnist", # Optional,
                params={"max_epochs": 10}, # Optional,
                tags=["pytorch-ignite","minst"] # Optional
            )

            # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration
            npt_logger.attach(
                trainer,
                log_handler=OptimizerParamsHandler(optimizer),
                event_name=Events.ITERATION_STARTED
            )
            # or equivalently
            npt_logger.attach_opt_params_handler(
                trainer,
                event_name=Events.ITERATION_STARTED,
                optimizer=optimizer
            )
    """

    def __init__(self, optimizer: Optimizer, param_name: str = "lr", tag: Optional[str] = None):
        super(OptimizerParamsHandler, self).__init__(optimizer, param_name, tag)

    def __call__(self, engine: Engine, logger: NeptuneLogger, event_name: Union[str, Events]) -> None:
        if not isinstance(logger, NeptuneLogger):
            raise TypeError("Handler OptimizerParamsHandler works only with NeptuneLogger")

        global_step = engine.state.get_event_attrib_value(event_name)
        tag_prefix = f"{self.tag}/" if self.tag else ""
        params = {
            f"{tag_prefix}{self.param_name}/group_{i}": float(param_group[self.param_name])
            for i, param_group in enumerate(self.optimizer.param_groups)
        }

        for k, v in params.items():
            logger[k].append(v, step=global_step)


class WeightsScalarHandler(BaseWeightsScalarHandler):
    """Helper handler to log model's weights as scalars.
    Handler, upon construction, iterates over named parameters of the model and keep
    reference to ones permitted by `whitelist`. Then at every call, applies
    reduction function to each parameter, produces a scalar and logs it.

    Args:
        model: model to log weights
        reduction: function to reduce parameters into scalar
        tag: common title for all produced plots. For example, "generator"
        whitelist: specific weights to log. Should be list of model's submodules
            or parameters names, or a callable which gets weight along with its name
            and determines if it should be logged. Names should be fully-qualified.
            For more information please refer to `PyTorch docs
            <https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.get_submodule>`_.
            If not given, all of model's weights are logged.

    Examples:
        .. code-block:: python

            from ignite.handlers.neptune_logger import *

            # Create a logger
            # We are using the api_token for the anonymous user neptuner but you can use your own.

            npt_logger = NeptuneLogger(
                api_token="ANONYMOUS",
                project_name="shared/pytorch-ignite-integration",
                experiment_name="cnn-mnist", # Optional,
                params={"max_epochs": 10}, # Optional,
                tags=["pytorch-ignite","minst"] # Optional
            )

            # Attach the logger to the trainer to log model's weights norm after each iteration
            npt_logger.attach(
                trainer,
                event_name=Events.ITERATION_COMPLETED,
                log_handler=WeightsScalarHandler(model, reduction=torch.norm)
            )

        .. code-block:: python

            from ignite.handlers.neptune_logger import *

            npt_logger = NeptuneLogger(
                api_token="ANONYMOUS",
                project_name="shared/pytorch-ignite-integration",
                experiment_name="cnn-mnist", # Optional,
                params={"max_epochs": 10}, # Optional,
                tags=["pytorch-ignite","minst"] # Optional
            )

            # Log only `fc` weights
            npt_logger.attach(
                trainer,
                event_name=Events.ITERATION_COMPLETED,
                log_handler=WeightsScalarHandler(
                    model,
                    whitelist=['fc']
                )
            )

        .. code-block:: python

            from ignite.handlers.neptune_logger import *

            npt_logger = NeptuneLogger(
                api_token="ANONYMOUS",
                project_name="shared/pytorch-ignite-integration",
                experiment_name="cnn-mnist", # Optional,
                params={"max_epochs": 10}, # Optional,
                tags=["pytorch-ignite","minst"] # Optional
            )

            # Log weights which have `bias` in their names
            def has_bias_in_name(n, p):
                return 'bias' in n

            npt_logger.attach(
                trainer,
                event_name=Events.ITERATION_COMPLETED,
                log_handler=WeightsScalarHandler(model, whitelist=has_bias_in_name)
            )

    ..  versionchanged:: 0.4.9
        optional argument `whitelist` added.
    """

    def __call__(self, engine: Engine, logger: NeptuneLogger, event_name: Union[str, Events]) -> None:
        if not isinstance(logger, NeptuneLogger):
            raise TypeError("Handler WeightsScalarHandler works only with NeptuneLogger")

        global_step = engine.state.get_event_attrib_value(event_name)
        tag_prefix = f"{self.tag}/" if self.tag else ""
        for name, p in self.weights:
            if p.grad is None:
                continue

            name = name.replace(".", "/")
            key = f"{tag_prefix}weights_{self.reduction.__name__}/{name}"
            logger[key].append(self.reduction(p.data), step=global_step)


class GradsScalarHandler(BaseWeightsScalarHandler):
    """Helper handler to log model's gradients as scalars.
    Handler, upon construction, iterates over named parameters of the model and keep
    reference to ones permitted by the `whitelist`. Then at every call, applies
    reduction function to each parameter's gradient, produces a scalar and logs it.

    Args:
        model: model to log weights
        reduction: function to reduce parameters into scalar
        tag: common title for all produced plots. For example, "generator"
        whitelist: specific gradients to log. Should be list of model's submodules
            or parameters names, or a callable which gets weight along with its name
            and determines if its gradient should be logged. Names should be
            fully-qualified. For more information please refer to `PyTorch docs
            <https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.get_submodule>`_.
            If not given, all of model's gradients are logged.

    Examples:
        .. code-block:: python

            from ignite.handlers.neptune_logger import *

            # Create a logger
            # We are using the api_token for the anonymous user neptuner but you can use your own.

            npt_logger = NeptuneLogger(
                api_token="ANONYMOUS",
                project_name="shared/pytorch-ignite-integration",
                experiment_name="cnn-mnist", # Optional,
                params={"max_epochs": 10}, # Optional,
                tags=["pytorch-ignite","minst"] # Optional
            )

            # Attach the logger to the trainer to log model's weights norm after each iteration
            npt_logger.attach(
                trainer,
                event_name=Events.ITERATION_COMPLETED,
                log_handler=GradsScalarHandler(model, reduction=torch.norm)
            )

        .. code-block:: python

            from ignite.handlers.neptune_logger import *

            npt_logger = NeptuneLogger(
                api_token="ANONYMOUS",
                project_name="shared/pytorch-ignite-integration",
                experiment_name="cnn-mnist", # Optional,
                params={"max_epochs": 10}, # Optional,
                tags=["pytorch-ignite","minst"] # Optional
            )

            # Log gradient of `base`
            npt_logger.attach(
                trainer,
                event_name=Events.ITERATION_COMPLETED,
                log_handler=GradsScalarHandler(
                    model,
                    reduction=torch.norm,
                    whitelist=['base']
                )
            )

        .. code-block:: python

            from ignite.handlers.neptune_logger import *

            npt_logger = NeptuneLogger(
                api_token="ANONYMOUS",
                project_name="shared/pytorch-ignite-integration",
                experiment_name="cnn-mnist", # Optional,
                params={"max_epochs": 10}, # Optional,
                tags=["pytorch-ignite","minst"] # Optional
            )

            # Log gradient of weights which belong to a `fc` layer
            def is_in_fc_layer(n, p):
                return 'fc' in n

            npt_logger.attach(
                trainer,
                event_name=Events.ITERATION_COMPLETED,
                log_handler=GradsScalarHandler(model, whitelist=is_in_fc_layer)
            )

    ..  versionchanged:: 0.4.9
        optional argument `whitelist` added.
    """

    def __call__(self, engine: Engine, logger: NeptuneLogger, event_name: Union[str, Events]) -> None:
        if not isinstance(logger, NeptuneLogger):
            raise TypeError("Handler GradsScalarHandler works only with NeptuneLogger")

        global_step = engine.state.get_event_attrib_value(event_name)
        tag_prefix = f"{self.tag}/" if self.tag else ""
        for name, p in self.weights:
            if p.grad is None:
                continue

            name = name.replace(".", "/")
            key = f"{tag_prefix}grads_{self.reduction.__name__}/{name}"
            logger[key].append(self.reduction(p.grad), step=global_step)


class NeptuneSaver(BaseSaveHandler):
    """Handler that saves input checkpoint to the Neptune server.

    Args:
        neptune_logger: an instance of
            NeptuneLogger class.

    .. Note ::

        NeptuneSaver is currently not supported on Windows.

    Examples:
        .. code-block:: python

            from ignite.handlers.neptune_logger import *

            # Create a logger
            # We are using the api_token for the anonymous user neptuner but you can use your own.

            npt_logger = NeptuneLogger(
                api_token="ANONYMOUS",
                project_name="shared/pytorch-ignite-integration",
                experiment_name="cnn-mnist", # Optional,
                params={"max_epochs": 10}, # Optional,
                tags=["pytorch-ignite","minst"] # Optional
            )

            ...
            evaluator = create_supervised_evaluator(model, metrics=metrics, ...)
            ...

            from ignite.handlers import Checkpoint

            def score_function(engine):
                return engine.state.metrics["accuracy"]

            to_save = {"model": model}

            # pass neptune logger to NeptuneServer

            handler = Checkpoint(
                to_save,
                NeptuneSaver(npt_logger), n_saved=2,
                filename_prefix="best", score_function=score_function,
                score_name="validation_accuracy",
                global_step_transform=global_step_from_engine(trainer)
            )

            evaluator.add_event_handler(Events.COMPLETED, handler)

            # We need to close the logger when we are done
            npt_logger.close()

    For example, you can access model checkpoints and download them from here:
    https://ui.neptune.ai/o/shared/org/pytorch-ignite-integration/e/PYTOR1-18/charts

    """

    @idist.one_rank_only()
    def __init__(self, neptune_logger: NeptuneLogger):
        self._logger = neptune_logger

    @idist.one_rank_only()
    def __call__(self, checkpoint: Mapping, filename: str, metadata: Optional[Mapping] = None) -> None:
        # wont work on XLA

        # Imports for BC compatibility
        try:
            # neptune-client<1.0.0 package structure
            with warnings.catch_warnings():
                # ignore the deprecation warnings
                warnings.simplefilter("ignore")
                from neptune.new.types import File
        except ImportError:
            # neptune>=1.0.0 package structure
            from neptune.types import File

        with tempfile.NamedTemporaryFile() as tmp:
            # we can not use tmp.name to open tmp.file twice on Win32
            # https://docs.python.org/3/library/tempfile.html#tempfile.NamedTemporaryFile
            torch.save(checkpoint, tmp.file)

            # rewind the buffer
            tmp.file.seek(0)

            # hold onto the file stream for uploading.
            # NOTE: This won't load the whole file in memory and upload
            #       the stream in smaller chunks.
            self._logger[filename].upload(File.from_stream(tmp.file))

    @idist.one_rank_only(with_barrier=True)
    def remove(self, filename: str) -> None:
        del self._logger.experiment[filename]