File: param_scheduler.py

package info (click to toggle)
pytorch-ignite 0.5.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,712 kB
  • sloc: python: 46,874; sh: 376; makefile: 27
file content (1746 lines) | stat: -rw-r--r-- 68,261 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
import itertools
import math
import numbers
import tempfile
import warnings
from abc import ABCMeta, abstractmethod
from collections import OrderedDict
from copy import copy
from pathlib import Path
from typing import Any, Dict, List, Mapping, Optional, Sequence, Tuple, Type, Union

import torch
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts, ReduceLROnPlateau
from torch.optim.optimizer import Optimizer

# https://github.com/pytorch/ignite/issues/2773
try:
    from torch.optim.lr_scheduler import LRScheduler as PyTorchLRScheduler
except ImportError:
    from torch.optim.lr_scheduler import _LRScheduler as PyTorchLRScheduler

from ignite.engine import Engine


class BaseParamScheduler(metaclass=ABCMeta):
    r"""An abstract class for updating an engine state or optimizer's parameter value during
    training.

    Args:
        param_name: name of engine state or optimizer's parameter to update.
        save_history: whether to log the parameter values to
            `engine.state.param_history`, (default=False).

    .. versionadded:: 0.4.7

    """

    def __init__(self, param_name: str, save_history: bool = False):
        self.param_name = param_name
        self.event_index = 0
        self._save_history = save_history
        self._state_attrs = ["event_index", "param_name", "save_history"]

    @property
    def save_history(self) -> bool:
        return self._save_history

    @save_history.setter
    def save_history(self, value: bool) -> None:
        self._save_history = value

    def state_dict(self) -> Dict[str, Any]:
        """Returns a dictionary containing a whole state of BaseParamScheduler.

        Returns:
            dict:
                a dictionary containing a whole state of BaseParamScheduler
        """
        destination = OrderedDict()
        for name in self._state_attrs:
            if hasattr(self, name):
                val = getattr(self, name)
                if hasattr(val, "state_dict"):
                    val = val.state_dict()
                destination[name] = copy(val)
        return destination

    def load_state_dict(self, state_dict: Mapping) -> None:
        """Copies parameters from :attr:`state_dict` into this BaseParamScheduler.

        Args:
            state_dict: a dict containing parameters.
        """
        if not isinstance(state_dict, Mapping):
            raise TypeError(f"Argument state_dict should be a dictionary, but given {type(state_dict)}")

        for name in self._state_attrs:
            if name not in state_dict:
                raise ValueError(
                    f"Required state attribute '{name}' is absent in provided state_dict '{state_dict.keys()}'"
                )
            val = state_dict[name]
            obj = getattr(self, name)
            if isinstance(val, Mapping) and hasattr(obj, "load_state_dict"):
                obj.load_state_dict(val)
            else:
                setattr(self, name, val)

    @abstractmethod
    def get_param(self) -> Union[List[float], float]:
        """Method to get current parameter values

        Returns:
            list of params, or scalar param
        """
        pass

    @classmethod
    @abstractmethod
    def simulate_values(cls, num_events: int, **scheduler_kwargs: Any) -> List[List[int]]:
        """Method to simulate scheduled values during `num_events` events.

        Args:
            num_events: number of events during the simulation.
            scheduler_kwargs: parameter scheduler configuration kwargs.

        Returns:
            event_index, value
        """
        pass

    @classmethod
    def plot_values(cls, num_events: int, **scheduler_kwargs: Mapping) -> Any:
        """Method to plot simulated scheduled values during `num_events` events.

        This class requires `matplotlib package <https://matplotlib.org/>`_ to be installed:

        .. code-block:: bash

            pip install matplotlib

        Args:
            num_events: number of events during the simulation.
            scheduler_kwargs: parameter scheduler configuration kwargs.

        Returns:
            matplotlib.lines.Line2D

        Examples:
            .. code-block:: python

                import matplotlib.pylab as plt

                plt.figure(figsize=(10, 7))
                LinearCyclicalScheduler.plot_values(num_events=50, param_name='lr',
                                                    start_value=1e-1, end_value=1e-3, cycle_size=10))
        """
        try:
            import matplotlib.pyplot as plt
        except ImportError:
            raise ModuleNotFoundError(
                "This method requires matplotlib to be installed. "
                "Please install it with command: \n pip install matplotlib"
            )

        values = cls.simulate_values(num_events=num_events, **scheduler_kwargs)
        label = scheduler_kwargs.get("param_name", "learning rate")
        ax = plt.plot([e for e, _ in values], [v for _, v in values], label=label)
        plt.legend()
        plt.grid(which="both")
        return ax


class ParamScheduler(BaseParamScheduler):
    """An abstract class for updating an optimizer's parameter value during
    training.

    Args:
        optimizer: torch optimizer or any object with attribute ``param_groups``
            as a sequence.
        param_name: name of optimizer's parameter to update.
        save_history: whether to log the parameter values to
            `engine.state.param_history`, (default=False).
        param_group_index: optimizer's parameters group to use

    Note:
        Parameter scheduler works independently of the internal state of the attached optimizer.
        More precisely, whatever the state of the optimizer (newly created or used by another scheduler) the scheduler
        sets defined absolute values.


    """

    def __init__(
        self,
        optimizer: Optimizer,
        param_name: str,
        save_history: bool = False,
        param_group_index: Optional[int] = None,
    ):
        super(ParamScheduler, self).__init__(param_name, save_history)
        if not (
            isinstance(optimizer, Optimizer)
            or (hasattr(optimizer, "param_groups") and isinstance(optimizer.param_groups, Sequence))
        ):
            raise TypeError(
                "Argument optimizer should be torch.optim.Optimizer or has attribute 'param_groups' as list/tuple, "
                f"but given {type(optimizer)}"
            )

        self.optimizer = optimizer
        self.param_group_index = param_group_index
        self._state_attrs += ["param_group_index"]

    def __call__(self, engine: Optional[Engine], name: Optional[str] = None) -> None:
        value = self._get_param()

        if isinstance(value, list):
            if len(value) != len(self.optimizer_param_groups):
                raise ValueError(
                    "size of value is different than optimizer_param_groups "
                    f"{len(value)} != {len(self.optimizer_param_groups)}"
                )

            for i, param_group in enumerate(self.optimizer_param_groups):
                param_group[self.param_name] = value[i]
        else:
            for i, param_group in enumerate(self.optimizer_param_groups):
                param_group[self.param_name] = value

        if name is None:
            name = self.param_name

        if self.save_history and engine:
            if not hasattr(engine.state, "param_history") or engine.state.param_history is None:
                setattr(engine.state, "param_history", {})
            engine.state.param_history.setdefault(name, [])  # type: ignore[attr-defined]
            values = [pg[self.param_name] for pg in self.optimizer_param_groups]
            engine.state.param_history[name].append(values)  # type: ignore[attr-defined]
        self.event_index += 1

    @property
    def optimizer_param_groups(self) -> List[Dict[str, Any]]:
        if self.param_group_index is None:
            return self.optimizer.param_groups
        return [self.optimizer.param_groups[self.param_group_index]]

    @classmethod
    def simulate_values(cls, num_events: int, **scheduler_kwargs: Any) -> List[List[int]]:
        """Method to simulate scheduled values during `num_events` events.

        Args:
            num_events: number of events during the simulation.
            scheduler_kwargs: parameter scheduler configuration kwargs.

        Returns:
            event_index, value

        Examples:

        .. code-block:: python

            lr_values = np.array(LinearCyclicalScheduler.simulate_values(num_events=50, param_name='lr',
                                                                         start_value=1e-1, end_value=1e-3,
                                                                         cycle_size=10))

            plt.plot(lr_values[:, 0], lr_values[:, 1], label="learning rate")
            plt.xlabel("events")
            plt.ylabel("values")
            plt.legend()

        """
        keys_to_remove = ["optimizer", "save_history"]
        for key in keys_to_remove:
            if key in scheduler_kwargs:
                del scheduler_kwargs[key]
        values = []
        scheduler = cls(optimizer=_get_fake_optimizer(), save_history=False, **scheduler_kwargs)
        for i in range(num_events):
            scheduler(engine=None)
            values.append([i, scheduler.optimizer_param_groups[0][scheduler.param_name]])
        return values

    def _get_param(self) -> Union[List[float], float]:
        # `ParamScheduler` does nothing special, only returning what child class returns.
        # Intermediate child classes edit this method
        return self.get_param()


class CyclicalScheduler(ParamScheduler):
    """An abstract class for updating an optimizer's parameter value over a
    cycle of some size.

    Args:
        optimizer: torch optimizer or any object with attribute ``param_groups``
            as a sequence.
        param_name: name of optimizer's parameter to update.
        start_value: value at start of cycle.
        end_value: value at the middle of the cycle.
        cycle_size: length of cycle, value should be larger than 1.
        cycle_mult: ratio by which to change the cycle_size.
            at the end of each cycle (default=1.0).
        start_value_mult: ratio by which to change the start value at the
            end of each cycle (default=1.0).
        end_value_mult: ratio by which to change the end value at the
            end of each cycle (default=1.0).
        warmup_duration: duration of warm-up to be applied before each cycle.
            Through this warm-up, the parameter starts from the last cycle's end value
            and linearly goes to next cycle's start value. Default is no cyclic warm-up.
        save_history: whether to log the parameter values to
            `engine.state.param_history`, (default=False).
        param_group_index: optimizer's parameters group to use.

    Note:
        If the scheduler is bound to an 'ITERATION_*' event, 'cycle_size' should
        usually be the number of batches in an epoch.

    .. versionadded:: 0.4.5

    .. versionchanged:: 0.4.13
        Added cyclic warm-up to the scheduler using ``warmup_duration``.
    """

    def __init__(
        self,
        optimizer: Optimizer,
        param_name: str,
        start_value: float,
        end_value: float,
        cycle_size: int,
        cycle_mult: float = 1.0,
        start_value_mult: float = 1.0,
        end_value_mult: float = 1.0,
        warmup_duration: int = 0,
        save_history: bool = False,
        param_group_index: Optional[int] = None,
    ):
        super(CyclicalScheduler, self).__init__(
            optimizer, param_name, save_history=save_history, param_group_index=param_group_index
        )
        self.start_value = start_value
        self.end_value = end_value
        self.cycle_size = cycle_size
        self.cycle_mult = cycle_mult
        self.cycle = 0
        self.start_value_mult = start_value_mult
        self.end_value_mult = end_value_mult
        self.warmup_duration = warmup_duration
        self.total_cycle_size = self.warmup_duration + self.cycle_size

        if self.cycle_size < 2:
            raise ValueError(f"Argument cycle_size should be positive and larger than 1, but given {cycle_size}")

        self._state_attrs += [
            "start_value",
            "end_value",
            "cycle_size",
            "cycle_mult",
            "cycle",
            "start_value_mult",
            "end_value_mult",
            "warmup_duration",
            "total_cycle_size",
        ]

    def __call__(self, engine: Optional[Engine], name: Optional[str] = None) -> None:
        if self.event_index != 0 and self.event_index == self.cycle_size:
            self.start_value *= self.start_value_mult
        if self.event_index != 0 and self.event_index == self.total_cycle_size:
            self.event_index = 0
            self.cycle_size = int(self.cycle_size * self.cycle_mult)
            self.warmup_duration = int(self.warmup_duration * self.cycle_mult)
            self.total_cycle_size = self.warmup_duration + self.cycle_size
            self.cycle += 1
            self.end_value *= self.end_value_mult

        return super(CyclicalScheduler, self).__call__(engine, name)

    def _get_param(self) -> Union[List[float], float]:
        """Applies warm-up if the scheduler is in the warm-up phase,
        otherwise returns what is returned by `self.get_param()`
        """
        if self.event_index > self.cycle_size:
            warmup_progress = (self.event_index - self.cycle_size) / self.warmup_duration
            return self.end_value + (self.start_value - self.end_value) * warmup_progress

        return self.get_param()


class LinearCyclicalScheduler(CyclicalScheduler):
    """Linearly adjusts param value to 'end_value' for a half-cycle, then linearly
    adjusts it back to 'start_value' for a half-cycle.

    Args:
        optimizer: torch optimizer or any object with attribute ``param_groups``
            as a sequence.
        param_name: name of optimizer's parameter to update.
        start_value: value at start of cycle.
        end_value: value at the middle of the cycle.
        cycle_size: length of cycle.
        cycle_mult: ratio by which to change the cycle_size
            at the end of each cycle (default=1).
        start_value_mult: ratio by which to change the start value at the
            end of each cycle (default=1.0).
        end_value_mult: ratio by which to change the end value at the
            end of each cycle (default=1.0).
        warmup_duration: duration of warm-up to be applied before each cycle.
            Through this warm-up, the parameter starts from the last cycle's end value
            and linearly goes to next cycle's start value. Default is no cyclic warm-up.
        save_history: whether to log the parameter values to
            `engine.state.param_history`, (default=False).
        param_group_index: optimizer's parameters group to use.
        monotonic: whether to schedule only one half of the cycle: descending or ascending.
            If True, this argument can not be used together with ``warmup_duration``.
            (default=False).

    Note:
        If the scheduler is bound to an 'ITERATION_*' event, 'cycle_size' should
        usually be the number of batches in an epoch.

    Examples:

        .. include:: defaults.rst
            :start-after: :orphan:

        .. testcode:: 1

            default_trainer = get_default_trainer()

            # Linearly increases the learning rate from 0.0 to 1.0 and back to 0.0
            # over a cycle of 4 iterations
            scheduler = LinearCyclicalScheduler(default_optimizer, "lr", 0.0, 1.0, 4)

            default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler)

            @default_trainer.on(Events.ITERATION_COMPLETED)
            def print_lr():
                print(default_optimizer.param_groups[0]["lr"])

            default_trainer.run([0] * 9, max_epochs=1)

        .. testoutput:: 1

            0.0
            0.5
            1.0
            0.5
            ...

        .. testcode:: 2

            default_trainer = get_default_trainer()

            optimizer = torch.optim.SGD(
                [
                    {"params": default_model.base.parameters(), "lr": 0.001},
                    {"params": default_model.fc.parameters(), "lr": 0.01},
                ]
            )

            # Linearly increases the learning rate from 0.0 to 1.0 and back to 0.0
            # over a cycle of 4 iterations
            scheduler1 = LinearCyclicalScheduler(optimizer, "lr (base)", 0.0, 1.0, 4, param_group_index=0)

            # Linearly increases the learning rate from 0.0 to 0.1 and back to 0.0
            # over a cycle of 4 iterations
            scheduler2 = LinearCyclicalScheduler(optimizer, "lr (fc)", 0.0, 0.1, 4, param_group_index=1)

            default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler1)
            default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler2)

            @default_trainer.on(Events.ITERATION_COMPLETED)
            def print_lr():
                print(optimizer.param_groups[0]["lr (base)"],
                      optimizer.param_groups[1]["lr (fc)"])

            default_trainer.run([0] * 9, max_epochs=1)

        .. testoutput:: 2

            0.0 0.0
            0.5 0.05
            1.0 0.1
            0.5 0.05
            ...

    .. versionadded:: 0.4.5

    .. versionchanged:: 0.4.13
        Added cyclic warm-up to the scheduler using ``warmup_duration``.

    .. versionchanged:: 0.5.0
        Added monotonic argument.
    """

    def __init__(self, *args: Any, monotonic: bool = False, **kwagrs: Any):
        super(LinearCyclicalScheduler, self).__init__(*args, **kwagrs)
        self.monotonic = monotonic
        if self.warmup_duration > 0 and not self.monotonic:
            raise ValueError(
                "Invalid combination when warmup_duration > 0 and monotonic=False, "
                "please use either set warmup_duration=0 or monotonic=True"
            )

    def get_param(self) -> float:
        """Method to get current optimizer's parameter value"""
        cycle_progress = self.event_index / self.cycle_size

        if self.monotonic:
            return self.start_value + (self.end_value - self.start_value) * cycle_progress
        else:
            return self.end_value + (self.start_value - self.end_value) * abs(cycle_progress - 0.5) * 2


class CosineAnnealingScheduler(CyclicalScheduler):
    """Anneals 'start_value' to 'end_value' over each cycle.

    The annealing takes the form of the first half of a cosine
    wave (as suggested in [Smith17]_).

    Args:
        optimizer: torch optimizer or any object with attribute ``param_groups``
            as a sequence.
        param_name: name of optimizer's parameter to update.
        start_value: value at start of cycle.
        end_value: value at the end of the cycle.
        cycle_size: length of cycle.
        cycle_mult: ratio by which to change the cycle_size
            at the end of each cycle (default=1).
        start_value_mult: ratio by which to change the start value at the
            end of each cycle (default=1.0).
        end_value_mult: ratio by which to change the end value at the
            end of each cycle (default=1.0).
        warmup_duration: duration of warm-up to be applied before each cycle.
            Through this warm-up, the parameter starts from the last cycle's end value
            and linearly goes to next cycle's start value. Default is no cyclic warm-up.
        save_history: whether to log the parameter values to
            `engine.state.param_history`, (default=False).
        param_group_index: optimizer's parameters group to use.

    Note:
        If the scheduler is bound to an 'ITERATION_*' event, 'cycle_size' should
        usually be the number of batches in an epoch.

    Examples:

        .. include:: defaults.rst
            :start-after: :orphan:

        .. testcode:: 1

            default_trainer = get_default_trainer()

            # CosineAnnealing increases the learning rate from 0.0 to 1.0
            # over a cycle of 4 iterations
            scheduler = CosineAnnealingScheduler(default_optimizer, "lr", 0.0, 1.0, 4)

            default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler)

            @default_trainer.on(Events.ITERATION_COMPLETED)
            def print_lr():
                print(default_optimizer.param_groups[0]["lr"])

            default_trainer.run([0] * 9, max_epochs=1)

        .. testoutput:: 1

            0.0
            0.1464...
            0.4999...
            0.8535...
            ...

        .. testcode:: 2

            default_trainer = get_default_trainer()

            optimizer = torch.optim.SGD(
                [
                    {"params": default_model.base.parameters(), "lr": 0.001},
                    {"params": default_model.fc.parameters(), "lr": 0.01},
                ]
            )

            # CosineAnnealing increases the learning rate from 0.0 to 1.0
            # over a cycle of 4 iterations
            scheduler_1 = CosineAnnealingScheduler(optimizer, "lr (base)", 0.0, 1.0, 4, param_group_index=0)

            # CosineAnnealing increases the learning rate from 0.0 to 0.1
            # over a cycle of 4 iterations
            scheduler_2 = CosineAnnealingScheduler(optimizer, "lr (fc)", 0.0, 0.1, 4, param_group_index=1)

            default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler_1)
            default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler_2)

            @default_trainer.on(Events.ITERATION_COMPLETED)
            def print_lr():
                print(optimizer.param_groups[0]["lr (base)"],
                      optimizer.param_groups[1]["lr (fc)"])

            default_trainer.run([0] * 9, max_epochs=1)

        .. testoutput:: 2

            0.0 0.0
            0.1464... 0.01464...
            0.4999... 0.04999...
            0.8535... 0.08535...
            ...

    .. [Smith17] Smith, Leslie N. "Cyclical learning rates for training neural networks."
                 Applications of Computer Vision (WACV), 2017 IEEE Winter Conference on. IEEE, 2017

    .. versionadded:: 0.4.5

    .. versionchanged:: 0.4.13
        Added cyclic warm-up to the scheduler using ``warmup_duration``.
    """

    def get_param(self) -> float:
        """Method to get current optimizer's parameter value"""
        cycle_progress = self.event_index / self.cycle_size
        return self.start_value + ((self.end_value - self.start_value) / 2) * (1 - math.cos(math.pi * cycle_progress))


class ConcatScheduler(ParamScheduler):
    """Concat a list of parameter schedulers.

    The `ConcatScheduler` goes through a list of schedulers given by `schedulers`. Duration of each
    scheduler is defined by `durations` list of integers.

    Args:
        schedulers: list of parameter schedulers.
        durations: list of number of events that lasts a parameter scheduler from schedulers.
        save_history: whether to log the parameter values to
            `engine.state.param_history`, (default=False).

    Examples:

        .. include:: defaults.rst
            :start-after: :orphan:

        .. testcode::

            default_trainer = get_default_trainer()

            scheduler_1 = LinearCyclicalScheduler(default_optimizer, "lr", 0.0, 1.0, 8)
            scheduler_2 = CosineAnnealingScheduler(default_optimizer, "lr", 1.0, 0.2, 4)

            # Sets the Learning rate linearly from 0.0 to 1.0 over 4 iterations. Then
            # starts an annealing schedule from 1.0 to 0.2 over the next 4 iterations.
            # The annealing cycles are repeated indefinitely.
            combined_scheduler = ConcatScheduler(schedulers=[scheduler_1, scheduler_2], durations=[4, ])

            default_trainer.add_event_handler(Events.ITERATION_STARTED, combined_scheduler)

            @default_trainer.on(Events.ITERATION_COMPLETED)
            def print_lr():
                print(default_optimizer.param_groups[0]["lr"])

            default_trainer.run([0] * 8, max_epochs=1)

        .. testoutput::

            0.0
            0.25
            0.5
            0.75
            1.0
            0.8828...
            0.6000...
            0.3171...

    .. versionadded:: 0.4.5
    """

    def __init__(self, schedulers: List[ParamScheduler], durations: List[int], save_history: bool = False):
        if not isinstance(schedulers, Sequence):
            raise TypeError(f"Argument schedulers should be a sequence, but given {schedulers}")

        if len(schedulers) < 2:
            raise ValueError(
                f"Argument schedulers should be of more than one parameter schedulers, but given {schedulers}"
            )

        if not isinstance(durations, (list, tuple)):
            raise TypeError(f"Argument durations should be list/tuple, but given {durations}")

        if not all([isinstance(t, numbers.Integral) for t in durations]):
            raise ValueError(f"Argument durations should be list/tuple of integers, but given {durations}")

        if len(schedulers) != len(durations) + 1:
            raise ValueError(
                "Incorrect number schedulers or duration values, " f"given {len(schedulers)} and {len(durations)}"
            )

        for i, scheduler in enumerate(schedulers):
            if not isinstance(scheduler, ParamScheduler) and not isinstance(scheduler, ParamGroupScheduler):
                raise TypeError(
                    f"Value at index {i} of schedulers should be a parameter scheduler, but given {type(scheduler)}"
                )

        self.schedulers = schedulers
        self.durations = durations

        tmp_optimizers = [s.optimizer for s in self.schedulers]
        tmp_list_optimizers = [s if isinstance(s, list) else [s] for s in tmp_optimizers]
        param_optimizers = list(itertools.chain(*tmp_list_optimizers))

        optimizer = list(set(param_optimizers))
        if len(optimizer) != 1:
            raise ValueError("schedulers should be related to same optimizer")

        tmp_param_names = [s.param_name for s in self.schedulers]
        tmp_list_param_names = [s if isinstance(s, list) else [s] for s in tmp_param_names]
        param_names = list(itertools.chain(*tmp_list_param_names))

        param_name = list(set(param_names))
        if len(param_name) != 1:
            raise ValueError("schedulers should be related to same param_name")

        # schedulers should have save_history sync with ParamGroupScheduler
        for s in schedulers:
            s.save_history = save_history

        super(ConcatScheduler, self).__init__(
            optimizer=optimizer[0], param_name=param_name[0], save_history=save_history
        )

        self._scheduler_index = 0
        self._setup_scheduler()
        self._state_attrs += ["_current_duration", "durations", "_scheduler_index"]

    def state_dict(self) -> Dict[str, Any]:
        """Returns a dictionary containing a whole state of ConcatScheduler.

        Returns:
            dict:
                a dictionary containing a whole state of ConcatScheduler
        """

        state_dict = super(ConcatScheduler, self).state_dict()
        state_dict["schedulers"] = []
        for s in self.schedulers:
            state_dict["schedulers"].append(s.state_dict())
        return state_dict

    def load_state_dict(self, state_dict: Mapping) -> None:
        """Copies parameters from :attr:`state_dict` into this ConcatScheduler.

        Args:
            state_dict: a dict containing parameters.
        """
        if not isinstance(state_dict, Mapping):
            raise TypeError(f"Argument state_dict should be a dictionary, but given {type(state_dict)}")

        if "schedulers" not in state_dict:
            raise ValueError(
                f"Required state attribute 'schedulers' is absent in provided state_dict '{state_dict.keys()}'"
            )
        sds = state_dict["schedulers"]
        if len(sds) != len(self.schedulers):
            raise ValueError(
                f"Input state_dict contains {len(sds)} state_dicts of concatenated schedulers, "
                f"but {len(self.schedulers)} needed"
            )

        for s, sd in zip(self.schedulers, sds):
            s.load_state_dict(sd)
        super(ConcatScheduler, self).load_state_dict(state_dict)
        self._current_scheduler = self.schedulers[self._scheduler_index]

    def _setup_scheduler(self) -> None:
        self._current_scheduler = self.schedulers[self._scheduler_index]
        self._current_duration = (
            self.durations[self._scheduler_index] if self._scheduler_index < len(self.durations) else -1
        )

    def __call__(self, engine: Optional[Engine], name: Optional[str] = None) -> None:
        if self._current_duration == 0:
            self._scheduler_index += 1
            self._setup_scheduler()
        self._current_scheduler(engine, name)
        self._current_duration -= 1

    @property
    def optimizer_param_groups(self) -> List[Dict[str, Any]]:
        # We need to setup optimizer_param_groups as property
        # to synchonize with the latest _current_scheduler and its internal optimizer_param_groups
        return self._current_scheduler.optimizer_param_groups

    @property
    def save_history(self) -> bool:
        return self._current_scheduler.save_history

    @save_history.setter
    def save_history(self, value: bool) -> None:
        for s in self.schedulers:
            s.save_history = value

    def get_param(self) -> Union[List[float], float]:
        return self._current_scheduler.get_param()

    @classmethod
    def simulate_values(  # type: ignore[override]
        cls,
        num_events: int,
        schedulers: List[ParamScheduler],
        durations: List[int],
        param_names: Optional[Union[List[str], Tuple[str]]] = None,
    ) -> List[List[int]]:
        """Method to simulate scheduled values during num_events events.

        Args:
            num_events: number of events during the simulation.
            schedulers: list of parameter schedulers.
            durations: list of number of events that lasts a parameter scheduler from schedulers.
            param_names: parameter name or list of parameter names to simulate values.
                By default, the first scheduler's parameter name is taken.

        Returns:
            list:
                list of [event_index, value_0, value_1, ...], where values correspond to `param_names`.
        """
        if param_names is not None:
            if not isinstance(param_names, (list, tuple)):
                raise TypeError(f"Argument param_names should be list or tuple, but given {type(param_names)}")
            if not all(isinstance(item, str) for item in param_names):
                raise ValueError(f"Argument param_names should be list or tuple of strings, but given {param_names}")

        tmp_param_optimizers = [s.optimizer for s in schedulers]
        tmp_list_param_optimizers = [s if isinstance(s, list) else [s] for s in tmp_param_optimizers]
        param_optimizers = list(itertools.chain(*tmp_list_param_optimizers))

        tmp_optimizer = list(set(param_optimizers))
        if len(tmp_optimizer) != 1:
            raise ValueError("schedulers should be related to same optimizer")

        optimizer = tmp_optimizer[0]

        # This scheduler uses `ParamScheduler` which
        # should be replicated in order to simulate LR values and
        # not perturb original scheduler.
        with tempfile.TemporaryDirectory() as tmpdirname:
            cache_filepath = Path(tmpdirname) / "ignite_lr_scheduler_cache.pt"
            objs = {f"lr_scheduler_{i}": s.state_dict() for i, s in enumerate(schedulers)}
            # all schedulers should be related to the same optimizer
            objs["optimizer"] = optimizer.state_dict()

            torch.save(objs, cache_filepath.as_posix())

            # do not save_history
            for s in schedulers:
                s.save_history = False

            output = []
            scheduler = cls(schedulers=schedulers, save_history=False, durations=durations)
            if param_names is None:
                param_names = [scheduler.param_name]
            for i in range(num_events):
                scheduler(engine=None)
                values = [i]
                for param_name in param_names:
                    params = [p[param_name] for p in scheduler.optimizer_param_groups]
                    values = values + params
                output.append(values)

            objs = torch.load(cache_filepath.as_posix())
            for i, s in enumerate(schedulers):
                s.load_state_dict(objs[f"lr_scheduler_{i}"])
            optimizer.load_state_dict(objs["optimizer"])

            return output


class _CosineAnnealingWarmRestarts:
    def __init__(self, lr_scheduler: CosineAnnealingWarmRestarts):
        self._lr_scheduler = lr_scheduler

    @property
    def last_epoch(self) -> int:
        return self._lr_scheduler.last_epoch

    @last_epoch.setter
    def last_epoch(self, value: int) -> None:
        self._lr_scheduler.last_epoch = value

    @property
    def optimizer(self) -> torch.optim.Optimizer:
        return self._lr_scheduler.optimizer

    def get_lr(self, epoch: Optional[int] = None) -> List[float]:
        T_mult = self._lr_scheduler.T_mult
        eta_min = self._lr_scheduler.eta_min

        if epoch is None and self.last_epoch < 0:
            epoch = 0
        if epoch is None:
            epoch = self.last_epoch + 1
            self._lr_scheduler.T_cur = self._lr_scheduler.T_cur + 1
            if self._lr_scheduler.T_cur >= self._lr_scheduler.T_i:
                self._lr_scheduler.T_cur = self._lr_scheduler.T_cur - self._lr_scheduler.T_i
                self._lr_scheduler.T_i = self._lr_scheduler.T_i * T_mult
        else:
            if epoch < 0:
                raise ValueError("Expected non-negative epoch, but got {}".format(epoch))
            if epoch >= self._lr_scheduler.T_0:
                if T_mult == 1:
                    self._lr_scheduler.T_cur = epoch % self._lr_scheduler.T_0
                else:
                    n = int(math.log((epoch / self._lr_scheduler.T_0 * (T_mult - 1) + 1), T_mult))
                    self._lr_scheduler.T_cur = epoch - self._lr_scheduler.T_0 * (T_mult**n - 1) / (T_mult - 1)
                    self._lr_scheduler.T_i = self._lr_scheduler.T_0 * T_mult**n
            else:
                self._lr_scheduler.T_i = self._lr_scheduler.T_0
                self._lr_scheduler.T_cur = epoch

        self.last_epoch = math.floor(epoch)

        return [
            eta_min
            + (base_lr - eta_min) * (1 + math.cos(math.pi * self._lr_scheduler.T_cur / self._lr_scheduler.T_i)) / 2
            for base_lr in self._lr_scheduler.base_lrs
        ]


class LRScheduler(ParamScheduler):
    """A wrapper class to call `torch.optim.lr_scheduler` objects as `ignite` handlers.

    Args:
        lr_scheduler: lr_scheduler object to wrap.
        save_history: whether to log the parameter values to
            `engine.state.param_history`, (default=False).
        use_legacy: if True, scheduler should be attached to ``Events.ITERATION_COMPLETED``, (default=False).

    Examples:

        .. include:: defaults.rst
            :start-after: :orphan:

        .. testcode::

            default_trainer = get_default_trainer()

            from torch.optim.lr_scheduler import StepLR

            torch_lr_scheduler = StepLR(default_optimizer, step_size=3, gamma=0.1)
            scheduler = LRScheduler(torch_lr_scheduler)

            default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler)

            @default_trainer.on(Events.ITERATION_COMPLETED)
            def print_lr():
                print(default_optimizer.param_groups[0]["lr"])

            default_trainer.run([0] * 8, max_epochs=1)

        .. testoutput::

            0.1
            0.1
            0.1
            0.010...
            0.010...
            0.010...
            0.001...
            0.001...

    .. versionadded:: 0.4.5

    ..  versionchanged:: 0.4.9
        added `use_legacy` argument
    """

    def __init__(
        self,
        lr_scheduler: PyTorchLRScheduler,
        save_history: bool = False,
        use_legacy: bool = False,
    ):
        if not isinstance(lr_scheduler, PyTorchLRScheduler):
            raise TypeError(
                "Argument lr_scheduler should be a subclass of "
                f"torch.optim.lr_scheduler.{PyTorchLRScheduler.__name__}, "
                f"but given {type(lr_scheduler)}"
            )

        self.lr_scheduler: Union[PyTorchLRScheduler, _CosineAnnealingWarmRestarts] = lr_scheduler
        if isinstance(lr_scheduler, CosineAnnealingWarmRestarts):
            self.lr_scheduler = _CosineAnnealingWarmRestarts(lr_scheduler)

        super(LRScheduler, self).__init__(
            optimizer=self.lr_scheduler.optimizer,
            param_name="lr",
            save_history=save_history,
        )
        if use_legacy:
            warnings.warn(
                "Please make sure to attach scheduler to Events.ITERATION_COMPLETED "
                "instead of Events.ITERATION_STARTED to make sure to use "
                "the first lr value from the optimizer, otherwise it will be skipped"
            )
            self.lr_scheduler.last_epoch += 1

        self._state_attrs += ["lr_scheduler"]

    def __call__(self, engine: Optional[Engine], name: Optional[str] = None) -> None:
        super(LRScheduler, self).__call__(engine, name)
        self.lr_scheduler.last_epoch += 1

    def get_param(self) -> Union[float, List[float]]:
        """Method to get current optimizer's parameter value"""
        # Emulate context manager for pytorch>=1.4
        self.lr_scheduler._get_lr_called_within_step = True  # type: ignore[union-attr]
        lr_list = self.lr_scheduler.get_lr()
        self.lr_scheduler._get_lr_called_within_step = False  # type: ignore[union-attr]
        if len(lr_list) == 1:
            return lr_list[0]
        else:
            return lr_list

    @classmethod
    def simulate_values(  # type: ignore[override]
        cls, num_events: int, lr_scheduler: PyTorchLRScheduler, **kwargs: Any
    ) -> List[List[int]]:
        """Method to simulate scheduled values during num_events events.

        Args:
            num_events: number of events during the simulation.
            lr_scheduler: lr_scheduler object to wrap.

        Returns:
            event_index, value
        """

        if not isinstance(lr_scheduler, PyTorchLRScheduler):
            raise TypeError(
                "Argument lr_scheduler should be a subclass of "
                f"torch.optim.lr_scheduler.{PyTorchLRScheduler.__name__}, "
                f"but given {type(lr_scheduler)}"
            )

        # This scheduler uses `torch.optim.lr_scheduler.LRScheduler` which
        # should be replicated in order to simulate LR values and
        # not perturb original scheduler.
        with tempfile.TemporaryDirectory() as tmpdirname:
            cache_filepath = Path(tmpdirname) / "ignite_lr_scheduler_cache.pt"
            obj = {
                "lr_scheduler": lr_scheduler.state_dict(),
                "optimizer": lr_scheduler.optimizer.state_dict(),
            }
            torch.save(obj, cache_filepath.as_posix())

            values = []
            scheduler = cls(save_history=False, lr_scheduler=lr_scheduler, **kwargs)
            for i in range(num_events):
                scheduler(engine=None)
                params = [p[scheduler.param_name] for p in scheduler.optimizer_param_groups]
                values.append([i] + params)

            obj = torch.load(cache_filepath.as_posix())
            lr_scheduler.load_state_dict(obj["lr_scheduler"])
            lr_scheduler.optimizer.load_state_dict(obj["optimizer"])

            return values


def create_lr_scheduler_with_warmup(
    lr_scheduler: Union[ParamScheduler, PyTorchLRScheduler],
    warmup_start_value: float,
    warmup_duration: int,
    warmup_end_value: Optional[float] = None,
    save_history: bool = False,
    output_simulated_values: Optional[List] = None,
) -> "ConcatScheduler":
    """
    Helper method to create a learning rate scheduler with a linear warm-up.

    Args:
        lr_scheduler: learning rate scheduler after the warm-up.
        warmup_start_value: learning rate start value of the warm-up phase.
        warmup_duration: warm-up phase duration, number of events.
        warmup_end_value: learning rate end value of the warm-up phase, (default=None). If None,
             warmup_end_value is set to optimizer initial lr.
        save_history: whether to log the parameter values to
            `engine.state.param_history`, (default=False).
        output_simulated_values: optional output of simulated learning rate values.
            If output_simulated_values is a list of None, e.g. `[None] * 100`, after the execution it will be filled
            by 100 simulated learning rate values.

    Returns:
        ConcatScheduler

    Note:
        If the first learning rate value provided by `lr_scheduler` is different from `warmup_end_value`, an additional
        event is added after the warm-up phase such that the warm-up ends with `warmup_end_value` value and then
        `lr_scheduler` provides its learning rate values as normally.

    Examples:

        .. include:: defaults.rst
            :start-after: :orphan:

        .. testcode::

            from torch.optim.lr_scheduler import ExponentialLR

            torch_lr_scheduler = ExponentialLR(optimizer=default_optimizer, gamma=0.98)

            default_trainer = get_default_trainer()

            scheduler = create_lr_scheduler_with_warmup(torch_lr_scheduler,
                                                        warmup_start_value=0.0,
                                                        warmup_end_value=0.1,
                                                        warmup_duration=3)

            default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler)

            @default_trainer.on(Events.ITERATION_COMPLETED)
            def print_lr():
                print(default_optimizer.param_groups[0]["lr"])

            default_trainer.run([0] * 8, max_epochs=1)

        .. testoutput::

            0.0
            0.05
            0.1
            0.098
            0.09604
            0.09411...
            0.09223...
            0.09039...

    .. versionadded:: 0.4.5
    """
    if not isinstance(lr_scheduler, (ParamScheduler, PyTorchLRScheduler)):
        raise TypeError(
            "Argument lr_scheduler should be a subclass of "
            f"torch.optim.lr_scheduler.{PyTorchLRScheduler.__name__} or ParamScheduler, "
            f"but given {type(lr_scheduler)}"
        )

    if not isinstance(warmup_duration, numbers.Integral):
        raise TypeError(f"Argument warmup_duration should be integer, but given {warmup_duration}")

    if not (warmup_duration > 1):
        raise ValueError(f"Argument warmup_duration should be at least 2 events, but given {warmup_duration}")

    warmup_schedulers: List[ParamScheduler] = []

    for param_group_index, param_group in enumerate(lr_scheduler.optimizer.param_groups):
        if warmup_end_value is None:
            param_group_warmup_end_value = param_group["lr"]
        else:
            param_group_warmup_end_value = warmup_end_value

        milestones_values = [(0, warmup_start_value), (warmup_duration - 1, param_group_warmup_end_value)]

        if isinstance(lr_scheduler, PyTorchLRScheduler):
            init_lr = param_group["lr"]
            if init_lr != param_group_warmup_end_value:
                milestones_values.append((warmup_duration, init_lr))

            # We need to advance torch lr_scheduler to avoid duplicated lr value
            # given by PiecewiseLinear and LRScheduler.
            # We suggest to attach output scheduler on ITERATION_STARTED but
            # torch lr_scheduler works with ITERATION_COMPLETED
            # See also https://github.com/pytorch/ignite/pull/2496#issuecomment-1065984440
            lr_scheduler.last_epoch += 1
            lr_scheduler = LRScheduler(lr_scheduler, save_history=save_history)
        else:
            init_lr = lr_scheduler.get_param()
            if init_lr == param_group_warmup_end_value:
                if warmup_duration > 2:
                    d = (param_group_warmup_end_value - warmup_start_value) / (warmup_duration - 1)
                    milestones_values[-1] = (warmup_duration - 2, param_group_warmup_end_value - d)
                else:
                    milestones_values.pop(-1)

        warmup_schedulers.append(
            PiecewiseLinear(
                lr_scheduler.optimizer,
                param_name="lr",
                milestones_values=milestones_values,
                param_group_index=param_group_index,
                save_history=save_history,
            )
        )

    warmup_scheduler = ParamGroupScheduler(warmup_schedulers, save_history=save_history)

    schedulers: List[Union[ParamScheduler, ParamGroupScheduler, PyTorchLRScheduler]] = [
        warmup_scheduler,
        lr_scheduler,
    ]
    durations = [milestones_values[-1][0] + 1]
    combined_scheduler = ConcatScheduler(schedulers, durations=durations, save_history=save_history)

    if output_simulated_values is not None:
        if not isinstance(output_simulated_values, list):
            raise TypeError(
                "Argument output_simulated_values should be a list of None, e.g. `[None] * 100`, "
                f"but given {type(output_simulated_values)}."
            )
        num_events = len(output_simulated_values)
        result = ConcatScheduler.simulate_values(num_events=num_events, schedulers=schedulers, durations=durations)
        for i in range(num_events):
            output_simulated_values[i] = result[i]
    return combined_scheduler


class PiecewiseLinear(ParamScheduler):
    """
    Piecewise linear parameter scheduler

    Args:
        optimizer: torch optimizer or any object with attribute ``param_groups``
            as a sequence.
        param_name: name of optimizer's parameter to update.
        milestones_values: list of tuples (event index, parameter value)
            represents milestones and parameter. Milestones should be increasing integers.
        save_history: whether to log the parameter values to
            `engine.state.param_history`, (default=False).
        param_group_index: optimizer's parameters group to use.

    .. code-block:: python

        scheduler = PiecewiseLinear(optimizer, "lr",
                                    milestones_values=[(10, 0.5), (20, 0.45), (21, 0.3), (30, 0.1), (40, 0.1)])
        # Attach to the trainer
        trainer.add_event_handler(Events.ITERATION_STARTED, scheduler)
        #
        # Sets the learning rate to 0.5 over the first 10 iterations, then decreases linearly from 0.5 to 0.45 between
        # 10th and 20th iterations. Next there is a jump to 0.3 at the 21st iteration and LR decreases linearly
        # from 0.3 to 0.1 between 21st and 30th iterations and remains 0.1 until the end of the iterations.

    Examples:

        .. include:: defaults.rst
            :start-after: :orphan:

        .. testcode:: 1

            default_trainer = get_default_trainer()

            milestones_values = [(1, 1.0), (3, 0.8), (5, 0.2)]
            scheduler = PiecewiseLinear(
                default_optimizer, "lr", milestones_values=milestones_values)
            # Sets lr equal to 1 for till the first iteration
            # Then linearly reduces lr from 1 to 0.8 till the third iteration
            # Then linearly reduces lr from 0.8 to 0.5 till the fifth iteration

            default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler)

            @default_trainer.on(Events.ITERATION_COMPLETED)
            def print_lr():
                print(default_optimizer.param_groups[0]["lr"])

            default_trainer.run([0] * 6, max_epochs=1)

        .. testoutput:: 1

            1.0
            1.0
            0.9
            0.8
            0.5
            0.2

        .. testcode:: 2

            default_trainer = get_default_trainer()

            optimizer = torch.optim.SGD(
                [
                    {"params": default_model.base.parameters(), "lr": 0.1},
                    {"params": default_model.fc.parameters(), "lr": 1.0},
                ]
            )

            milestones_values1 = [(1, 0.1), (3, 0.08), (5, 0.02)]
            scheduler2 = PiecewiseLinear(
                optimizer, "lr", milestones_values=milestones_values1, param_group_index=0)
            # Sets lr equal to 0.1 for till the first iteration
            # Then linearly reduces lr from 0.1 to 0.08 till the third iteration
            # Then linearly reduces lr from 0.08 to 0.05 till the fifth iteration

            milestones_values2 = [(1, 1.0), (3, 0.8), (5, 0.2)]
            scheduler1 = PiecewiseLinear(
                optimizer, "lr", milestones_values=milestones_values2, param_group_index=1)
            # Sets lr equal to 1 for till the first iteration
            # Then linearly reduces lr from 1 to 0.8 till the third iteration
            # Then linearly reduces lr from 0.8 to 0.5 till the fifth iteration

            default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler1)
            default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler2)

            @default_trainer.on(Events.ITERATION_COMPLETED)
            def print_lr():
                print(optimizer.param_groups[0]["lr"],
                      optimizer.param_groups[1]["lr"])

            default_trainer.run([0] * 6, max_epochs=1)

        .. testoutput:: 2

            0.1 1.0
            0.1 1.0
            0.09 0.9
            0.08 0.8
            0.05 0.5
            0.02 0.2

    .. versionadded:: 0.4.5
    """

    def __init__(
        self,
        optimizer: Optimizer,
        param_name: str,
        milestones_values: List[Tuple[int, float]],
        save_history: bool = False,
        param_group_index: Optional[int] = None,
    ):
        super(PiecewiseLinear, self).__init__(optimizer, param_name, save_history, param_group_index=param_group_index)

        if not isinstance(milestones_values, Sequence):
            raise TypeError(
                f"Argument milestones_values should be a list or tuple, but given {type(milestones_values)}"
            )
        if len(milestones_values) < 1:
            raise ValueError(
                f"Argument milestones_values should be with at least one value, but given {milestones_values}"
            )

        values: List[float] = []
        milestones: List[int] = []
        for pair in milestones_values:
            if not isinstance(pair, tuple) or len(pair) != 2:
                raise ValueError("Argument milestones_values should be a list of pairs (milestone, param_value)")
            if not isinstance(pair[0], numbers.Integral):
                raise TypeError(f"Value of a milestone should be integer, but given {type(pair[0])}")
            if len(milestones) > 0 and pair[0] < milestones[-1]:
                raise ValueError(
                    f"Milestones should be increasing integers, but given {pair[0]} is smaller "
                    f"than the previous milestone {milestones[-1]}"
                )
            milestones.append(pair[0])
            values.append(pair[1])

        self.values = values
        self.milestones = milestones
        self._index = 0
        self._state_attrs += ["values", "milestones", "_index"]

    def _get_start_end(self) -> Tuple[int, int, float, float]:
        if self.milestones[0] > self.event_index:
            return self.event_index - 1, self.event_index, self.values[0], self.values[0]
        elif self.milestones[-1] <= self.event_index:
            return (self.event_index, self.event_index + 1, self.values[-1], self.values[-1])
        elif self.milestones[self._index] <= self.event_index < self.milestones[self._index + 1]:
            return (
                self.milestones[self._index],
                self.milestones[self._index + 1],
                self.values[self._index],
                self.values[self._index + 1],
            )
        else:
            self._index += 1
            return self._get_start_end()

    def get_param(self) -> float:
        start_index, end_index, start_value, end_value = self._get_start_end()
        return start_value + (end_value - start_value) * (self.event_index - start_index) / (end_index - start_index)


class ParamGroupScheduler:
    """
    Scheduler helper to group multiple schedulers into one.

    Args:
        schedulers: list/tuple of parameter schedulers.
        names: list of names of schedulers.
        save_history: whether to save history or not.

    Examples:

        .. include:: defaults.rst
            :start-after: :orphan:

        .. testcode::

            default_trainer = get_default_trainer()

            optimizer = torch.optim.SGD(
                [
                    {"params": default_model.base.parameters(), "lr": 0.001},
                    {"params": default_model.fc.parameters(), "lr": 0.01},
                ]
            )

            # CosineAnnealing increases the learning rate from 0.0 to 1.0
            # over a cycle of 4 iterations
            scheduler_1 = CosineAnnealingScheduler(optimizer, "lr", 0.0, 1.0, 4, param_group_index=0)

            # CosineAnnealing increases the learning rate from 0.0 to 0.1
            # over a cycle of 4 iterations
            scheduler_2 = CosineAnnealingScheduler(optimizer, "lr", 0.0, 0.1, 4, param_group_index=1)

            scheduler = ParamGroupScheduler(schedulers=[scheduler_1, scheduler_2],
                                            names=["lr (base)", "lr (fc)"])

            default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler)

            @default_trainer.on(Events.ITERATION_COMPLETED)
            def print_lr():
                print(optimizer.param_groups[0]["lr"],
                      optimizer.param_groups[1]["lr"])

            default_trainer.run([0] * 8, max_epochs=1)

        .. testoutput::

            0.0 0.0
            0.1464... 0.01464...
            0.4999... 0.04999...
            0.8535... 0.08535...
            ...

    .. versionadded:: 0.4.5
    """

    def __init__(self, schedulers: List[ParamScheduler], names: Optional[List[str]] = None, save_history: bool = False):
        if not isinstance(schedulers, Sequence):
            raise TypeError(f"Argument schedulers should be a list/tuple, but given {schedulers}")

        if not all(isinstance(scheduler, ParamScheduler) for scheduler in schedulers):
            raise ValueError(
                f"Argument schedulers should be a list/tuple of parameter schedulers, but given {schedulers}"
            )

        if names is None:
            names = [s.param_name for s in schedulers]

        if not isinstance(names, (list, tuple)):
            raise TypeError(f"Argument names should be a list/tuple, but given {names}")

        if not all(isinstance(n, str) for n in names):
            raise ValueError(f"Argument names should be a list/tuple of parameter scheduler's names, but given {names}")

        if len(names) != len(schedulers):
            raise ValueError(f"{len(schedulers)} should be equal {len(names)}")

        self.schedulers = schedulers
        self.names = names

        # schedulers should have save_history sync with ParamGroupScheduler
        for s in schedulers:
            s.save_history = save_history

        self.optimizer = [s.optimizer for s in self.schedulers]
        self.param_name = [s.param_name for s in self.schedulers]

    def __call__(self, engine: Optional[Engine], name: Optional[str] = None) -> None:
        for scheduler, name in zip(self.schedulers, self.names):
            scheduler(engine, name)

    @property
    def optimizer_param_groups(self) -> List[Dict[str, Any]]:
        return [pg for scheduler in self.schedulers for pg in scheduler.optimizer_param_groups]

    @property
    def save_history(self) -> bool:
        return self.schedulers[0].save_history

    @save_history.setter
    def save_history(self, value: bool) -> None:
        for s in self.schedulers:
            s.save_history = value

    def state_dict(self) -> Dict[str, List[Any]]:
        """Returns a dictionary containing a whole state of ParamGroupScheduler.

        Returns:
            dict:
                a dictionary containing a whole state of ParamGroupScheduler
        """
        state_dict: Dict[str, List[Any]] = OrderedDict()
        state_dict["schedulers"] = []
        for n, s in zip(self.names, self.schedulers):
            state_dict["schedulers"].append((n, s.state_dict()))
        return state_dict

    def load_state_dict(self, state_dict: Mapping) -> None:
        """Copies parameters from :attr:`state_dict` into this ParamScheduler.

        Args:
            state_dict: a dict containing parameters.
        """
        if not isinstance(state_dict, Mapping):
            raise TypeError(f"Argument state_dict should be a dictionary, but given {type(state_dict)}")

        if "schedulers" not in state_dict:
            raise ValueError(
                f"Required state attribute '{'schedulers'}' is absent in provided state_dict '{state_dict.keys()}'"
            )
        sds = state_dict["schedulers"]
        if len(sds) != len(self.schedulers):
            raise ValueError(
                f"Input state_dict contains {len(sds)} state_dicts of param group schedulers, "
                f"but {len(self.schedulers)} needed"
            )

        for req_n, s, (n, sd) in zip(self.names, self.schedulers, sds):
            if req_n != n:
                raise ValueError(
                    f"Name of scheduler from input state dict does not correspond to required one, {n} vs {req_n}"
                )
            s.load_state_dict(sd)

    @classmethod
    def simulate_values(
        cls, num_events: int, schedulers: List[ParamScheduler], **kwargs: Any
    ) -> List[List[Union[List[float], float, int]]]:
        """Method to simulate scheduled values during num_events events.

        Args:
            num_events: number of events during the simulation.
            schedulers: lr_scheduler object to wrap.
            kwargs: kwargs passed to construct an instance of
                :class:`ignite.handlers.param_scheduler.ParamGroupScheduler`.

        Returns:
            list:
                list of [event_index, scheduler_0_value, scheduler_1_value, ...], where scheduler_i_value
                corresponds to the simulated param of scheduler i at 'event_index'th event.
        """

        # This scheduler uses `torch.optim.lr_scheduler.LRScheduler` which
        # should be replicated in order to simulate LR values and
        # not perturb original scheduler.
        with tempfile.TemporaryDirectory() as tmpdirname:
            cache_filepath = Path(tmpdirname) / "ignite_lr_scheduler_cache.pt"
            objs = {f"lr_scheduler_{i}": s.state_dict() for i, s in enumerate(schedulers)}
            # all schedulers should be related to the same optimizer
            objs["optimizer"] = schedulers[0].optimizer.state_dict()

            torch.save(objs, cache_filepath.as_posix())

            values = []
            scheduler = cls(schedulers=schedulers, **kwargs)
            for i in range(num_events):
                params = [scheduler.get_param() for scheduler in schedulers]
                values.append([i] + params)
                scheduler(engine=None)

            objs = torch.load(cache_filepath.as_posix())
            for i, s in enumerate(schedulers):
                s.load_state_dict(objs[f"lr_scheduler_{i}"])
                s.optimizer.load_state_dict(objs["optimizer"])

            return values

    def get_param(self) -> List[Union[float, List[float]]]:
        """
        Method to get current `schedulers`' parameter values

        .. versionadded:: 0.4.11
        """
        return [scheduler.get_param() for scheduler in self.schedulers]


class ReduceLROnPlateauScheduler(ParamScheduler):
    """Reduce LR when a metric stops improving.
    Wrapper of `torch.optim.lr_scheduler.ReduceLROnPlateau
    <https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html>`_.

    Args:
        optimizer: Wrapped optimizer.
        metric_name: metric whose improvement is monitored.
            Must be attached to the same engine.
        trainer: Trainer engine to log LR history in its
            `state.output.param_history`. Is used if `save_history`
            is true. Default: None.
        save_history: Whether to save history or not. If true,
            history will be logged in `trainer`'s `state.output.param_history`.
            Default: False.
        param_group_index: `optimizer`'s parameters group
            to use.  Default: None. Use all `optimizer`'s paramater groups.
        scheduler_kwargs: Keyword arguments to be passed to the wrapped ``ReduceLROnPlateau``.

    Examples:

        .. code-block:: python

            # Metric "accuracy" should increase the best value by
            # more than 1 unit after at most 2 epochs, otherwise LR
            # would get multiplied by 0.5 .

            scheduler = ReduceLROnPlateauScheduler(
                default_optimizer,
                metric_name="accuracy", mode="max",
                factor=0.5, patience=1, threshold_mode='abs',
                threshold=1, trainer=trainer
            )

            metric = Accuracy()
            default_evaluator.attach(metric, "accuracy")

            default_evaluator.add_event_handler(Events.COMPLETED, scheduler)

        .. include:: defaults.rst
            :start-after: :orphan:

        .. testcode::

            default_trainer = get_default_trainer()

            # Metric "loss" should decrease more than
            # 0.1 of best loss after at most
            # three iterations. Then best loss would get
            # updated, otherwise lr is multiplied by 0.5

            scheduler = ReduceLROnPlateauScheduler(
                default_optimizer, "loss",
                save_history=True, mode="min",
                factor=0.5, patience=3, threshold_mode='rel',
                threshold=0.1, trainer=default_trainer
            )

            metric_values = iter([10, 5, 3, 4, 4, 4, 5, 1])
            default_evaluator.state.metrics = {"loss": None}

            @default_trainer.on(Events.ITERATION_COMPLETED)
            def set_metric_val():
                default_evaluator.state.metrics["loss"] = next(metric_values)

            default_evaluator.add_event_handler(Events.COMPLETED, scheduler)

            @default_trainer.on(Events.ITERATION_COMPLETED)
            def trigger_eval():
                default_evaluator.run([0.])

            default_trainer.run([0.] * 8)

            print(default_trainer.state.param_history["lr"])

        .. testoutput::

            [[0.1], [0.1], [0.1], [0.1], [0.1], [0.1], [0.05], [0.05]]

    .. versionadded:: 0.4.9
    """

    def __init__(
        self,
        optimizer: Optimizer,
        metric_name: str,
        trainer: Optional[Engine] = None,
        save_history: bool = False,
        param_group_index: Optional[int] = None,
        **scheduler_kwargs: Any,
    ):
        super(ReduceLROnPlateauScheduler, self).__init__(
            optimizer, "lr", save_history=save_history, param_group_index=param_group_index
        )
        self.metric_name = metric_name
        self.trainer = trainer
        self.optimizer = optimizer

        if "min_lr" in scheduler_kwargs and param_group_index is not None:
            min_lr = scheduler_kwargs["min_lr"]
            if not isinstance(min_lr, float):
                raise TypeError(f"When param_group_index is given, min_lr should be a float, but given {type(min_lr)}")
            _min_lr = min_lr
            min_lr = [0] * len(optimizer.param_groups)
            min_lr[param_group_index] = _min_lr
        else:
            min_lr = 0
        _scheduler_kwargs = scheduler_kwargs.copy()
        _scheduler_kwargs["min_lr"] = min_lr

        if "verbose" in _scheduler_kwargs:
            warnings.warn(
                "Found verbose=True in provided scheduler_kwargs. "
                "It would be set to False. Please use save_history instead."
            )
            _scheduler_kwargs["verbose"] = False

        self.scheduler = ReduceLROnPlateau(optimizer, **_scheduler_kwargs)
        self.scheduler._reduce_lr = self._reduce_lr  # type: ignore[method-assign]

        self._state_attrs += ["metric_name", "scheduler"]

    def __call__(self, engine: Engine, name: Optional[str] = None) -> None:  # type: ignore[override]
        if not hasattr(engine.state, "metrics") or self.metric_name not in engine.state.metrics:
            raise ValueError(
                "Argument engine should have in its 'state', attribute 'metrics' "
                f"which itself has the metric {self.metric_name}."
            )
        self.scheduler.step(engine.state.metrics[self.metric_name])
        super().__call__(self.trainer, name)

    def get_param(self) -> Union[float, List[float]]:
        lrs = [pg["lr"] for pg in self.optimizer_param_groups]
        return lrs[0] if len(lrs) == 1 else lrs

    def _reduce_lr(self, epoch: int) -> None:
        for i, param_group in enumerate(self.optimizer_param_groups):
            old_lr = float(param_group["lr"])
            new_lr = max(old_lr * self.scheduler.factor, self.scheduler.min_lrs[i])
            if old_lr - new_lr > self.scheduler.eps:
                param_group["lr"] = new_lr

    @classmethod
    def simulate_values(  # type: ignore[override]
        cls, num_events: int, metric_values: List[float], init_lr: float, **scheduler_kwargs: Any
    ) -> List[List[int]]:
        """Method to simulate scheduled values during num_events events.

        Args:
            num_events: number of events during the simulation.
            metric_values: values to change LR based on.
            init_lr: initial LR to start with.
            scheduler_kwargs: kwargs passed to construct an instance of
                :class:`ignite.handlers.param_scheduler.ReduceLROnPlateauScheduler`.

        Returns:
            event_index, value

        """
        if len(metric_values) != num_events:
            raise ValueError(
                "Length of argument metric_values should be equal to num_events. "
                f"{len(metric_values)} != {num_events}"
            )

        keys_to_remove = ["optimizer", "metric_name", "save_history"]
        for key in keys_to_remove:
            if key in scheduler_kwargs:
                del scheduler_kwargs[key]
        values = []
        scheduler = cls(
            optimizer=_get_fake_optimizer(torch.optim.SGD, lr=init_lr),
            metric_name="metric",
            save_history=False,
            **scheduler_kwargs,
        )
        engine = Engine(lambda _, __: None)
        for i in range(num_events):
            engine.state.metrics["metric"] = metric_values[i]
            scheduler(engine=engine)
            values.append([i, scheduler.optimizer_param_groups[0][scheduler.param_name]])
        return values


def _get_fake_optimizer(
    optimizer_cls: Optional[Union[Type[Optimizer], Type[torch.optim.SGD]]] = None, **kwargs: Any
) -> Union[Optimizer, torch.optim.SGD]:
    t = torch.zeros([1], requires_grad=True)
    if optimizer_cls is None:
        optimizer_cls = torch.optim.SGD
        kwargs["lr"] = 0.01
    return optimizer_cls([t], **kwargs)