File: state_param_scheduler.py

package info (click to toggle)
pytorch-ignite 0.5.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,712 kB
  • sloc: python: 46,874; sh: 376; makefile: 27
file content (551 lines) | stat: -rw-r--r-- 20,745 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
import numbers
import warnings
from bisect import bisect_right
from typing import Any, List, Sequence, Tuple, Union

from ignite.engine import CallableEventWithFilter, Engine, Events, EventsList
from ignite.handlers.param_scheduler import BaseParamScheduler


class StateParamScheduler(BaseParamScheduler):
    """An abstract class for updating an engine state parameter values during training.

    Args:
        param_name: name of parameter to update.
        save_history: whether to log the parameter values to ``engine.state.param_history``, (default=False).
        create_new: whether to create ``param_name`` on ``engine.state`` taking into account whether ``param_name``
            attribute already exists or not. Overrides existing attribute by default, (default=False).

    Note:
        Parameter scheduler works independently of the internal state of the attached engine.
        More precisely, whatever the state of the engine (newly created or used by another scheduler) the scheduler
        sets defined absolute values.

    .. versionadded:: 0.4.7

    """

    def __init__(self, param_name: str, save_history: bool = False, create_new: bool = False):
        super(StateParamScheduler, self).__init__(param_name, save_history)
        self.create_new = create_new

    def attach(
        self,
        engine: Engine,
        event: Union[str, Events, CallableEventWithFilter, EventsList] = Events.ITERATION_COMPLETED,
    ) -> None:
        """Attach the handler to the engine. Once the handler is attached, the ``Engine.state`` will have a new
        attribute with the name ``param_name``. Then the current value of the parameter can be retrieved from
        ``Engine.state`` when the engine is running.

        Args:
            engine: trainer to which the handler will be attached.
            event: trigger ``param_name`` value update.

        """
        if hasattr(engine.state, self.param_name):
            if self.create_new:
                raise ValueError(
                    f"Attribute '{self.param_name}' already exists in the engine.state. "
                    f"This may be a conflict between multiple handlers. "
                    f"Please choose another name."
                )
        else:
            if not self.create_new:
                warnings.warn(
                    f"Attribute '{self.param_name}' is not defined in the engine.state. "
                    f"{type(self).__name__} will create it. Remove this warning by setting create_new=True."
                )
            setattr(engine.state, self.param_name, None)

        if self.save_history:
            if not hasattr(engine.state, "param_history") or engine.state.param_history is None:
                setattr(engine.state, "param_history", {})
            engine.state.param_history.setdefault(self.param_name, [])  # type: ignore[attr-defined]

        engine.add_event_handler(event, self)

    def __call__(self, engine: Engine) -> None:
        self.event_index += 1
        value = self.get_param()
        setattr(engine.state, self.param_name, value)
        if self.save_history:
            engine.state.param_history[self.param_name].append(value)  # type: ignore[attr-defined]

    @classmethod
    def simulate_values(cls, num_events: int, **scheduler_kwargs: Any) -> List[List[int]]:
        """Method to simulate scheduled engine state parameter values during `num_events` events.

        Args:
            num_events: number of events during the simulation.
            scheduler_kwargs: parameter scheduler configuration kwargs.

        Returns:
            event_index, value

        Examples:

        .. code-block:: python

            import matplotlib.pyplot as plt
            import numpy as np

            step_state_param_values = np.array(
                StepStateScheduler.simulate_values(
                    num_events=20, param_name="step_scheduled_param", initial_value=10, gamma=0.99, step_size=5
                )
            )

            plt.plot(step_state_param_values[:, 0], step_state_param_values[:, 1], label="learning rate")
            plt.xlabel("events")
            plt.ylabel("values")
            plt.legend()

        """
        for key in ["save_history"]:
            if key in scheduler_kwargs:
                del scheduler_kwargs[key]
        values = []
        scheduler = cls(save_history=False, **scheduler_kwargs)
        engine = Engine(lambda e, b: None)
        for i in range(num_events):
            scheduler(engine=engine)
            values.append([i, getattr(engine.state, scheduler_kwargs["param_name"])])
        return values


class LambdaStateScheduler(StateParamScheduler):
    """Update a parameter during training by using a user defined callable object.
        User defined callable object is taking an event index as input and returns parameter value.

    Args:
        lambda_obj: user defined callable object.
        param_name: name of parameter to update.
        save_history: whether to log the parameter values to
            `engine.state.param_history`, (default=False).
        create_new: whether to create ``param_name`` on
            ``engine.state`` taking into account whether
            ``param_name`` attribute already exists or not.
            Overrides existing attribute by default, (default=False).

    Examples:

        .. include:: defaults.rst
            :start-after: :orphan:

        .. testcode::

            default_trainer = get_default_trainer()

            class LambdaState:
                def __init__(self, initial_value, gamma):
                    self.initial_value = initial_value
                    self.gamma = gamma

                def __call__(self, event_index):
                    return self.initial_value * self.gamma ** (event_index % 9)

            param_scheduler = LambdaStateScheduler(
                param_name="param", lambda_obj=LambdaState(1, 0.9), create_new=True
            )

            # parameter is param, initial_value sets param to 1 and in this example gamma = 1
            # using class 'LambdaState' user defined callable object can be created
            # update a parameter during training by using a user defined callable object
            # user defined callable object is taking an event index as input and returns parameter value
            # in this example, we update as initial_value * gamma ** (event_endex % 9)
            # in every Epoch the parameter is updated as 1 * 0.9 ** (Epoch % 9)
            # In Epoch 3, parameter param = 1 * 0.9 ** (3 % 9) = 0.729
            # In Epoch 10, parameter param = 1 * 0.9 ** (10 % 9) = 0.9

            param_scheduler.attach(default_trainer, Events.EPOCH_COMPLETED)

            @default_trainer.on(Events.EPOCH_COMPLETED)
            def print_param():
                print(default_trainer.state.param)

            default_trainer.run([0], max_epochs=10)

        .. testoutput::

            0.9
            0.81
            0.7290...
            0.6561
            0.5904...
            0.5314...
            0.4782...
            0.4304...
            1.0
            0.9

    .. versionadded:: 0.4.7

    """

    def __init__(self, lambda_obj: Any, param_name: str, save_history: bool = False, create_new: bool = False):
        super(LambdaStateScheduler, self).__init__(param_name, save_history, create_new)

        if not callable(lambda_obj):
            raise ValueError("Expected lambda_obj to be callable.")

        self.lambda_obj = lambda_obj
        self._state_attrs += ["lambda_obj"]

    def get_param(self) -> Union[List[float], float]:
        return self.lambda_obj(self.event_index)


class PiecewiseLinearStateScheduler(StateParamScheduler):
    """Piecewise linear state parameter scheduler.

    Args:
        milestones_values: list of tuples (event index, parameter value)
            represents milestones and parameter values. Milestones should be increasing integers.
        param_name: name of parameter to update.
        save_history: whether to log the parameter values to
            `engine.state.param_history`, (default=False).
        create_new: whether to create ``param_name`` on
            ``engine.state`` taking into account whether
            ``param_name`` attribute already exists or not.
            Overrides existing attribute by default, (default=False).

    Examples:

        .. include:: defaults.rst
            :start-after: :orphan:

        .. testcode::

            default_trainer = get_default_trainer()

            param_scheduler = PiecewiseLinearStateScheduler(
                param_name="param",  milestones_values=[(5, 1.0), (10, 0.8), (15, 0.6)], create_new=True
            )

            # parameter is param, milestone (5, 1.0) sets param to 1.0
            # milestone is (5, 1.0), param=1  for Epoch 1 to 5,
            # next milestone is (10, 0.8), param linearly reduces from 1.0 to 0.8
            # Epoch 10, param = 0.8
            # next milestone is (15,0.6), param linearly reduces from 0.8 to 0.6
            # Epoch 15, param = 0.6

            param_scheduler.attach(default_trainer, Events.EPOCH_COMPLETED)

            @default_trainer.on(Events.EPOCH_COMPLETED)
            def print_param():
                print(default_trainer.state.param)

            default_trainer.run([0], max_epochs=15)

        .. testoutput::

            1.0
            1.0
            1.0
            1.0
            1.0
            0.96
            0.92
            0.88
            0.8400...
            0.8
            0.76
            0.72
            0.68
            0.64
            0.6

    .. versionadded:: 0.4.7
    """

    def __init__(
        self,
        milestones_values: List[Tuple[int, float]],
        param_name: str,
        save_history: bool = False,
        create_new: bool = False,
    ):
        super(PiecewiseLinearStateScheduler, self).__init__(param_name, save_history, create_new)

        if not isinstance(milestones_values, Sequence):
            raise TypeError(
                f"Argument milestones_values should be a list or tuple, but given {type(milestones_values)}"
            )
        if len(milestones_values) < 1:
            raise ValueError(
                f"Argument milestones_values should be with at least one value, but given {milestones_values}"
            )

        values: List[float] = []
        milestones: List[int] = []
        for pair in milestones_values:
            if not isinstance(pair, tuple) or len(pair) != 2:
                raise ValueError("Argument milestones_values should be a list of pairs (milestone, param_value)")
            if not isinstance(pair[0], numbers.Integral):
                raise TypeError(f"Value of a milestone should be integer, but given {type(pair[0])}")
            if len(milestones) > 0 and pair[0] < milestones[-1]:
                raise ValueError(
                    f"Milestones should be increasing integers, but given {pair[0]} is smaller "
                    f"than the previous milestone {milestones[-1]}"
                )
            milestones.append(pair[0])
            values.append(pair[1])

        self.values = values
        self.milestones = milestones
        self._index = 0
        self._state_attrs += ["values", "milestones", "_index"]

    def _get_start_end(self) -> Tuple[int, int, float, float]:
        if self.milestones[0] > self.event_index:
            return self.event_index - 1, self.event_index, self.values[0], self.values[0]
        elif self.milestones[-1] <= self.event_index:
            return (self.event_index, self.event_index + 1, self.values[-1], self.values[-1])
        elif self.milestones[self._index] <= self.event_index < self.milestones[self._index + 1]:
            return (
                self.milestones[self._index],
                self.milestones[self._index + 1],
                self.values[self._index],
                self.values[self._index + 1],
            )
        else:
            self._index += 1
            return self._get_start_end()

    def get_param(self) -> Union[List[float], float]:
        start_index, end_index, start_value, end_value = self._get_start_end()
        return start_value + (end_value - start_value) * (self.event_index - start_index) / (end_index - start_index)


class ExpStateScheduler(StateParamScheduler):
    """Update a parameter during training by using exponential function.
    The function decays the parameter value by gamma every step.
    Based on the closed form of ExponentialLR from PyTorch
    https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ExponentialLR.html

    Args:
        initial_value: Starting value of the parameter.
        gamma: Multiplicative factor of parameter value decay.
        param_name: name of parameter to update.
        save_history: whether to log the parameter values to
            `engine.state.param_history`, (default=False).
        create_new: whether to create ``param_name`` on
            ``engine.state`` taking into account whether
            ``param_name`` attribute already exists or not.
            Overrides existing attribute by default, (default=False).

    Examples:

        .. include:: defaults.rst
            :start-after: :orphan:

        .. testcode::

            default_trainer = get_default_trainer()

            param_scheduler = ExpStateScheduler(
                param_name="param", initial_value=1, gamma=0.9, create_new=True
            )

            # parameter is param, initial_value sets param to 1, gamma is set as 0.9
            # Epoch 1, param changes from 1 to 1*0.9, param = 0.9
            # Epoch 2, param changes from 0.9 to 0.9*0.9, param = 0.81
            # Epoch 3, param changes from 0.81 to 0.81*0.9, param = 0.729
            # Epoch 4, param changes from 0.81 to 0.729*0.9, param = 0.6561

            param_scheduler.attach(default_trainer, Events.EPOCH_COMPLETED)

            @default_trainer.on(Events.EPOCH_COMPLETED)
            def print_param():
                print(default_trainer.state.param)

            default_trainer.run([0], max_epochs=4)

        .. testoutput::

            0.9
            0.81
            0.7290...
            0.6561

    .. versionadded:: 0.4.7

    """

    def __init__(
        self, initial_value: float, gamma: float, param_name: str, save_history: bool = False, create_new: bool = False
    ):
        super(ExpStateScheduler, self).__init__(param_name, save_history, create_new)
        self.initial_value = initial_value
        self.gamma = gamma
        self._state_attrs += ["initial_value", "gamma"]

    def get_param(self) -> Union[List[float], float]:
        return self.initial_value * self.gamma**self.event_index


class StepStateScheduler(StateParamScheduler):
    """Update a parameter during training by using a step function.
    This function decays the parameter value by gamma every step_size.
    Based on StepLR from PyTorch.
    https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.StepLR.html

    Args:
        initial_value: Starting value of the parameter.
        gamma: Multiplicative factor of parameter value decay.
        step_size: Period of parameter value decay.
        param_name: name of parameter to update.
        save_history: whether to log the parameter values to
            `engine.state.param_history`, (default=False).
        create_new: whether to create ``param_name`` on
            ``engine.state`` taking into account whether
            ``param_name`` attribute already exists or not.
            Overrides existing attribute by default, (default=False).

    Examples:

        .. include:: defaults.rst
            :start-after: :orphan:

        .. testcode::

            default_trainer = get_default_trainer()

            param_scheduler = StepStateScheduler(
                param_name="param", initial_value=1, gamma=0.9, step_size=5, create_new=True
            )

            # parameter is param, initial_value sets param to 1, gamma is set as 0.9
            # Epoch 1 to 4, param does not change as step size is 5,
            # Epoch 5, param changes from 1 to 1*0.9, param = 0.9
            # Epoch 5 to 9, param = 0.9 as step size is 5,
            # Epoch 10, param changes from 0.9 to 0.9*0.9, param = 0.81
            # Epoch 10 to 14, param = 0.81, as step size is 5
            # Epoch 15, param changes from 0.81 to 0.81*0.9, param = 0.729
            # and so on ... the param change at Epoch = 5, 10, 15, 20, . . .

            param_scheduler.attach(default_trainer, Events.EPOCH_COMPLETED)

            @default_trainer.on(Events.EPOCH_COMPLETED(every=5))
            def print_param():
                print(default_trainer.state.param)

            default_trainer.run([0], max_epochs=25)

        .. testoutput::

            0.9
            0.81
            0.7290...
            0.6561
            0.5904...

    .. versionadded:: 0.4.7

    """

    def __init__(
        self,
        initial_value: float,
        gamma: float,
        step_size: int,
        param_name: str,
        save_history: bool = False,
        create_new: bool = False,
    ):
        super(StepStateScheduler, self).__init__(param_name, save_history, create_new)
        self.initial_value = initial_value
        self.gamma = gamma
        self.step_size = step_size
        self._state_attrs += ["initial_value", "gamma", "step_size"]

    def get_param(self) -> Union[List[float], float]:
        return self.initial_value * self.gamma ** (self.event_index // self.step_size)


class MultiStepStateScheduler(StateParamScheduler):
    """Update a parameter during training by using a multi step function.
    The function decays the parameter value by gamma once the number of steps reaches one of the milestones.
    Based on MultiStepLR from PyTorch.
    https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.MultiStepLR.html

    Args:
        initial_value: Starting value of the parameter.
        gamma: Multiplicative factor of parameter value decay.
        milestones: List of step indices. Must be increasing.
        param_name: name of parameter to update.
        save_history: whether to log the parameter values to
            `engine.state.param_history`, (default=False).
        create_new: whether to create ``param_name`` on
            ``engine.state`` taking into account whether
            ``param_name`` attribute already exists or not.
            Overrides existing attribute by default, (default=False).

    Examples:

        .. include:: defaults.rst
            :start-after: :orphan:

        .. testcode::

            default_trainer = get_default_trainer()

            param_scheduler = MultiStepStateScheduler(
                param_name="param", initial_value=1, gamma=0.9, milestones=[3, 6, 9, 12], create_new=True
            )

            # parameter is param, initial_value sets param to 1, gamma is set as 0.9
            # Epoch 1 to 2, param does not change as milestone is 3
            # Epoch 3, param changes from 1 to 1*0.9, param = 0.9
            # Epoch 3 to 5, param does not change as milestone is 6
            # Epoch 6, param changes from 0.9 to 0.9*0.9, param = 0.81
            # Epoch 6 to 8, param does not change as milestone is 9
            # Epoch 9, param changes from 0.81 to 0.81*0.9, param = 0.729
            # Epoch 9 to 11, param does not change as milestone is 12
            # Epoch 12, param changes from 0.729 to 0.729*0.9, param = 0.6561

            param_scheduler.attach(default_trainer, Events.EPOCH_COMPLETED)

            @default_trainer.on(Events.EPOCH_COMPLETED)
            def print_param():
                print(default_trainer.state.param)

            default_trainer.run([0], max_epochs=12)

        .. testoutput::

            1.0
            1.0
            0.9
            0.9
            0.9
            0.81
            0.81
            0.81
            0.7290...
            0.7290...
            0.7290...
            0.6561

    .. versionadded:: 0.4.7

    """

    def __init__(
        self,
        initial_value: float,
        gamma: float,
        milestones: List[int],
        param_name: str,
        save_history: bool = False,
        create_new: bool = False,
    ):
        super(MultiStepStateScheduler, self).__init__(param_name, save_history, create_new)
        self.initial_value = initial_value
        self.gamma = gamma
        self.milestones = milestones
        self._state_attrs += ["initial_value", "gamma", "milestones"]

    def get_param(self) -> Union[List[float], float]:
        return self.initial_value * self.gamma ** bisect_right(self.milestones, self.event_index)