File: visdom_logger.py

package info (click to toggle)
pytorch-ignite 0.5.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,712 kB
  • sloc: python: 46,874; sh: 376; makefile: 27
file content (557 lines) | stat: -rw-r--r-- 21,551 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
"""Visdom logger and its helper handlers."""

import os
from typing import Any, Callable, cast, Dict, List, Optional, Union

import torch
import torch.nn as nn
from torch.optim import Optimizer

from ignite.engine import Engine, Events
from ignite.handlers.base_logger import (
    BaseLogger,
    BaseOptimizerParamsHandler,
    BaseOutputHandler,
    BaseWeightsScalarHandler,
)

from ignite.handlers.utils import global_step_from_engine  # noqa

__all__ = [
    "VisdomLogger",
    "OptimizerParamsHandler",
    "OutputHandler",
    "WeightsScalarHandler",
    "GradsScalarHandler",
    "global_step_from_engine",
]


class VisdomLogger(BaseLogger):
    """
    VisdomLogger handler to log metrics, model/optimizer parameters, gradients during the training and validation.

    This class requires `visdom <https://github.com/fossasia/visdom/>`_ package to be installed:

    .. code-block:: bash


        pip install git+https://github.com/fossasia/visdom.git

    Args:
        server: visdom server URL. It can be also specified by environment variable `VISDOM_SERVER_URL`
        port: visdom server's port. It can be also specified by environment variable `VISDOM_PORT`
        num_workers: number of workers to use in `concurrent.futures.ThreadPoolExecutor` to post data to
            visdom server. Default, `num_workers=1`. If `num_workers=0` and logger uses the main thread. If using
            Python 2.7 and `num_workers>0` the package `futures` should be installed: `pip install futures`
        kwargs: kwargs to pass into
            `visdom.Visdom <https://github.com/fossasia/visdom#visdom-arguments-python-only>`_.

    Note:
        We can also specify username/password using environment variables: VISDOM_USERNAME, VISDOM_PASSWORD


    .. warning::

        Frequent logging, e.g. when logger is attached to `Events.ITERATION_COMPLETED`, can slow down the run if the
        main thread is used to send the data to visdom server (`num_workers=0`). To avoid this situation we can either
        log less frequently or set `num_workers=1`.

    Examples:
        .. code-block:: python

            from ignite.handlers.visdom_logger import *

            # Create a logger
            vd_logger = VisdomLogger()

            # Attach the logger to the trainer to log training loss at each iteration
            vd_logger.attach_output_handler(
                trainer,
                event_name=Events.ITERATION_COMPLETED,
                tag="training",
                output_transform=lambda loss: {"loss": loss}
            )

            # Attach the logger to the evaluator on the training dataset and log NLL, Accuracy metrics after each epoch
            # We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch
            # of the `trainer` instead of `train_evaluator`.
            vd_logger.attach_output_handler(
                train_evaluator,
                event_name=Events.EPOCH_COMPLETED,
                tag="training",
                metric_names=["nll", "accuracy"],
                global_step_transform=global_step_from_engine(trainer),
            )

            # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after
            # each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch of the
            # `trainer` instead of `evaluator`.
            vd_logger.attach_output_handler(
                evaluator,
                event_name=Events.EPOCH_COMPLETED,
                tag="validation",
                metric_names=["nll", "accuracy"],
                global_step_transform=global_step_from_engine(trainer)),
            )

            # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration
            vd_logger.attach_opt_params_handler(
                trainer,
                event_name=Events.ITERATION_STARTED,
                optimizer=optimizer,
                param_name='lr'  # optional
            )

            # Attach the logger to the trainer to log model's weights norm after each iteration
            vd_logger.attach(
                trainer,
                event_name=Events.ITERATION_COMPLETED,
                log_handler=WeightsScalarHandler(model)
            )

            # Attach the logger to the trainer to log model's gradients norm after each iteration
            vd_logger.attach(
                trainer,
                event_name=Events.ITERATION_COMPLETED,
                log_handler=GradsScalarHandler(model)
            )

            # We need to close the logger with we are done
            vd_logger.close()

        It is also possible to use the logger as context manager:

        .. code-block:: python

            from ignite.handlers.visdom_logger import *

            with VisdomLogger() as vd_logger:

                trainer = Engine(update_fn)
                # Attach the logger to the trainer to log training loss at each iteration
                vd_logger.attach_output_handler(
                    trainer,
                    event_name=Events.ITERATION_COMPLETED,
                    tag="training",
                    output_transform=lambda loss: {"loss": loss}
                )

    .. versionchanged:: 0.4.7
        accepts an optional list of `state_attributes`
    """

    def __init__(
        self,
        server: Optional[str] = None,
        port: Optional[int] = None,
        num_workers: int = 1,
        raise_exceptions: bool = True,
        **kwargs: Any,
    ):
        try:
            import visdom
        except ImportError:
            raise ModuleNotFoundError(
                "This contrib module requires visdom package. "
                "Please install it with command:\n"
                "pip install git+https://github.com/fossasia/visdom.git"
            )

        if num_workers > 0:
            # If visdom is installed, one of its dependencies `tornado`
            # requires also `futures` to be installed.
            # Let's check anyway if we can import it.
            try:
                from concurrent.futures import ThreadPoolExecutor
            except ImportError:
                raise ModuleNotFoundError(
                    "This contrib module requires concurrent.futures module"
                    "Please install it with command:\n"
                    "pip install futures"
                )

        if server is None:
            server = cast(str, os.environ.get("VISDOM_SERVER_URL", "localhost"))

        if port is None:
            port = int(os.environ.get("VISDOM_PORT", 8097))

        if "username" not in kwargs:
            username = os.environ.get("VISDOM_USERNAME", None)
            kwargs["username"] = username

        if "password" not in kwargs:
            password = os.environ.get("VISDOM_PASSWORD", None)
            kwargs["password"] = password

        self.vis = visdom.Visdom(server=server, port=port, raise_exceptions=raise_exceptions, **kwargs)

        if not self.vis.offline and not self.vis.check_connection():  # type: ignore[attr-defined]
            raise RuntimeError(f"Failed to connect to Visdom server at {server}. Did you run python -m visdom.server ?")

        self.executor: Union[_DummyExecutor, "ThreadPoolExecutor"] = _DummyExecutor()
        if num_workers > 0:
            self.executor = ThreadPoolExecutor(max_workers=num_workers)

    def _save(self) -> None:
        self.vis.save([self.vis.env])  # type: ignore[attr-defined]

    def close(self) -> None:
        self.executor.shutdown()
        self.vis.close()

    def _create_output_handler(self, *args: Any, **kwargs: Any) -> "OutputHandler":
        return OutputHandler(*args, **kwargs)

    def _create_opt_params_handler(self, *args: Any, **kwargs: Any) -> "OptimizerParamsHandler":
        return OptimizerParamsHandler(*args, **kwargs)


class _BaseVisDrawer:
    def __init__(self, show_legend: bool = False):
        self.windows: Dict[str, Any] = {}
        self.show_legend = show_legend

    def add_scalar(
        self, logger: VisdomLogger, k: str, v: Union[str, float, torch.Tensor], event_name: Any, global_step: int
    ) -> None:
        """
        Helper method to log a scalar with VisdomLogger.

        Args:
            logger: visdom logger
            k: scalar name which is used to set window title and y-axis label
            v: scalar value, y-axis value
            event_name: Event name which is used to setup x-axis label. Valid events are from
                :class:`~ignite.engine.events.Events` or any `event_name` added by
                :meth:`~ignite.engine.engine.Engine.register_events`.
            global_step: global step, x-axis value

        """
        if k not in self.windows:
            self.windows[k] = {
                "win": None,
                "opts": {"title": k, "xlabel": str(event_name), "ylabel": k, "showlegend": self.show_legend},
            }

        update = None if self.windows[k]["win"] is None else "append"

        kwargs = {
            "X": [global_step],
            "Y": [v],
            "env": logger.vis.env,  # type: ignore[attr-defined]
            "win": self.windows[k]["win"],
            "update": update,
            "opts": self.windows[k]["opts"],
            "name": k,
        }

        future = logger.executor.submit(logger.vis.line, **kwargs)
        if self.windows[k]["win"] is None:
            self.windows[k]["win"] = future.result()


class OutputHandler(BaseOutputHandler, _BaseVisDrawer):
    """Helper handler to log engine's output and/or metrics

    Args:
        tag: common title for all produced plots. For example, "training"
        metric_names: list of metric names to plot or a string "all" to plot all available
            metrics.
        output_transform: output transform function to prepare `engine.state.output` as a number.
            For example, `output_transform = lambda output: output`
            This function can also return a dictionary, e.g `{"loss": loss1, "another_loss": loss2}` to label the plot
            with corresponding keys.
        global_step_transform: global step transform function to output a desired global step.
            Input of the function is `(engine, event_name)`. Output of function should be an integer.
            Default is None, global_step based on attached engine. If provided,
            uses function output as global_step. To setup global step from another engine, please use
            :meth:`~ignite.handlers.visdom_logger.global_step_from_engine`.
        show_legend: flag to show legend in the window
        state_attributes: list of attributes of the ``trainer.state`` to plot.

    Examples:
        .. code-block:: python

            from ignite.handlers.visdom_logger import *

            # Create a logger
            vd_logger = VisdomLogger()

            # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after
            # each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch
            # of the `trainer`:
            vd_logger.attach(
                evaluator,
                log_handler=OutputHandler(
                    tag="validation",
                    metric_names=["nll", "accuracy"],
                    global_step_transform=global_step_from_engine(trainer)
                ),
                event_name=Events.EPOCH_COMPLETED
            )
            # or equivalently
            vd_logger.attach_output_handler(
                evaluator,
                event_name=Events.EPOCH_COMPLETED,
                tag="validation",
                metric_names=["nll", "accuracy"],
                global_step_transform=global_step_from_engine(trainer)
            )

        Another example, where model is evaluated every 500 iterations:

        .. code-block:: python

            from ignite.handlers.visdom_logger import *

            @trainer.on(Events.ITERATION_COMPLETED(every=500))
            def evaluate(engine):
                evaluator.run(validation_set, max_epochs=1)

            vd_logger = VisdomLogger()

            def global_step_transform(*args, **kwargs):
                return trainer.state.iteration

            # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after
            # every 500 iterations. Since evaluator engine does not have access to the training iteration, we
            # provide a global_step_transform to return the trainer.state.iteration for the global_step, each time
            # evaluator metrics are plotted on Visdom.

            vd_logger.attach_output_handler(
                evaluator,
                event_name=Events.EPOCH_COMPLETED,
                tag="validation",
                metrics=["nll", "accuracy"],
                global_step_transform=global_step_transform
            )

        Another example where the State Attributes ``trainer.state.alpha`` and ``trainer.state.beta``
        are also logged along with the NLL and Accuracy after each iteration:

        .. code-block:: python

            vd_logger.attach(
                trainer,
                log_handler=OutputHandler(
                    tag="training",
                    metric_names=["nll", "accuracy"],
                    state_attributes=["alpha", "beta"],
                ),
                event_name=Events.ITERATION_COMPLETED
            )

        Example of `global_step_transform`:

        .. code-block:: python

            def global_step_transform(engine, event_name):
                return engine.state.get_event_attrib_value(event_name)
    """

    def __init__(
        self,
        tag: str,
        metric_names: Optional[str] = None,
        output_transform: Optional[Callable] = None,
        global_step_transform: Optional[Callable[[Engine, Union[str, Events]], int]] = None,
        show_legend: bool = False,
        state_attributes: Optional[List[str]] = None,
    ):
        super(OutputHandler, self).__init__(
            tag, metric_names, output_transform, global_step_transform, state_attributes
        )
        _BaseVisDrawer.__init__(self, show_legend=show_legend)

    def __call__(self, engine: Engine, logger: VisdomLogger, event_name: Union[str, Events]) -> None:
        if not isinstance(logger, VisdomLogger):
            raise RuntimeError("Handler 'OutputHandler' works only with VisdomLogger")

        metrics = self._setup_output_metrics_state_attrs(engine, key_tuple=False)

        global_step = self.global_step_transform(engine, event_name)

        if not isinstance(global_step, int):
            raise TypeError(
                f"global_step must be int, got {type(global_step)}."
                " Please check the output of global_step_transform."
            )

        for key, value in metrics.items():
            self.add_scalar(logger, key, value, event_name, global_step)

        logger._save()


class OptimizerParamsHandler(BaseOptimizerParamsHandler, _BaseVisDrawer):
    """Helper handler to log optimizer parameters

    Args:
        optimizer: torch optimizer or any object with attribute ``param_groups``
            as a sequence.
        param_name: parameter name
        tag: common title for all produced plots. For example, "generator"
        show_legend: flag to show legend in the window

    Examples:
        .. code-block:: python

            from ignite.handlers.visdom_logger import *

            # Create a logger
            vb_logger = VisdomLogger()

            # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration
            vd_logger.attach(
                trainer,
                log_handler=OptimizerParamsHandler(optimizer),
                event_name=Events.ITERATION_STARTED
            )
            # or equivalently
            vd_logger.attach_opt_params_handler(
                trainer,
                event_name=Events.ITERATION_STARTED,
                optimizer=optimizer
            )
    """

    def __init__(
        self, optimizer: Optimizer, param_name: str = "lr", tag: Optional[str] = None, show_legend: bool = False
    ):
        super(OptimizerParamsHandler, self).__init__(optimizer, param_name, tag)
        _BaseVisDrawer.__init__(self, show_legend=show_legend)

    def __call__(self, engine: Engine, logger: VisdomLogger, event_name: Union[str, Events]) -> None:
        if not isinstance(logger, VisdomLogger):
            raise RuntimeError("Handler OptimizerParamsHandler works only with VisdomLogger")

        global_step = engine.state.get_event_attrib_value(event_name)
        tag_prefix = f"{self.tag}/" if self.tag else ""
        params = {
            f"{tag_prefix}{self.param_name}/group_{i}": float(param_group[self.param_name])
            for i, param_group in enumerate(self.optimizer.param_groups)
        }

        for k, v in params.items():
            self.add_scalar(logger, k, v, event_name, global_step)

        logger._save()


class WeightsScalarHandler(BaseWeightsScalarHandler, _BaseVisDrawer):
    """Helper handler to log model's weights as scalars.
    Handler iterates over named parameters of the model, applies reduction function to each parameter
    produce a scalar and then logs the scalar.

    Args:
        model: model to log weights
        reduction: function to reduce parameters into scalar
        tag: common title for all produced plots. For example, "generator"
        show_legend: flag to show legend in the window

    Examples:
        .. code-block:: python

            from ignite.handlers.visdom_logger import *

            # Create a logger
            vd_logger = VisdomLogger()

            # Attach the logger to the trainer to log model's weights norm after each iteration
            vd_logger.attach(
                trainer,
                event_name=Events.ITERATION_COMPLETED,
                log_handler=WeightsScalarHandler(model, reduction=torch.norm)
            )
    """

    def __init__(
        self, model: nn.Module, reduction: Callable = torch.norm, tag: Optional[str] = None, show_legend: bool = False
    ):
        super(WeightsScalarHandler, self).__init__(model, reduction, tag=tag)
        _BaseVisDrawer.__init__(self, show_legend=show_legend)

    def __call__(self, engine: Engine, logger: VisdomLogger, event_name: Union[str, Events]) -> None:
        if not isinstance(logger, VisdomLogger):
            raise RuntimeError("Handler 'WeightsScalarHandler' works only with VisdomLogger")

        global_step = engine.state.get_event_attrib_value(event_name)
        tag_prefix = f"{self.tag}/" if self.tag else ""
        for name, p in self.model.named_parameters():
            name = name.replace(".", "/")
            k = f"{tag_prefix}weights_{self.reduction.__name__}/{name}"
            v = self.reduction(p.data)
            self.add_scalar(logger, k, v, event_name, global_step)

        logger._save()


class GradsScalarHandler(BaseWeightsScalarHandler, _BaseVisDrawer):
    """Helper handler to log model's gradients as scalars.
    Handler iterates over the gradients of named parameters of the model, applies reduction function to each parameter
    produce a scalar and then logs the scalar.

    Args:
        model: model to log weights
        reduction: function to reduce parameters into scalar
        tag: common title for all produced plots. For example, "generator"
        show_legend: flag to show legend in the window

    Examples:
        .. code-block:: python

            from ignite.handlers.visdom_logger import *

            # Create a logger
            vd_logger = VisdomLogger()

            # Attach the logger to the trainer to log model's weights norm after each iteration
            vd_logger.attach(
                trainer,
                event_name=Events.ITERATION_COMPLETED,
                log_handler=GradsScalarHandler(model, reduction=torch.norm)
            )
    """

    def __init__(
        self, model: nn.Module, reduction: Callable = torch.norm, tag: Optional[str] = None, show_legend: bool = False
    ):
        super(GradsScalarHandler, self).__init__(model, reduction, tag)
        _BaseVisDrawer.__init__(self, show_legend=show_legend)

    def __call__(self, engine: Engine, logger: VisdomLogger, event_name: Union[str, Events]) -> None:
        if not isinstance(logger, VisdomLogger):
            raise RuntimeError("Handler 'GradsScalarHandler' works only with VisdomLogger")

        global_step = engine.state.get_event_attrib_value(event_name)
        tag_prefix = f"{self.tag}/" if self.tag else ""
        for name, p in self.model.named_parameters():
            if p.grad is None:
                continue

            name = name.replace(".", "/")
            k = f"{tag_prefix}grads_{self.reduction.__name__}/{name}"
            v = self.reduction(p.grad)
            self.add_scalar(logger, k, v, event_name, global_step)

        logger._save()


class _DummyExecutor:
    class _DummyFuture:
        def __init__(self, result: Any) -> None:
            self._output = result

        def result(self) -> Any:
            return self._output

    def __init__(self, *args: Any, **kwargs: Any) -> None:
        pass

    def submit(self, fn: Callable, **kwargs: Any) -> "_DummyFuture":
        return _DummyExecutor._DummyFuture(fn(**kwargs))

    def shutdown(self, *args: Any, **kwargs: Any) -> None:
        pass