File: __init__.py

package info (click to toggle)
pytorch-ignite 0.5.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,712 kB
  • sloc: python: 46,874; sh: 376; makefile: 27
file content (89 lines) | stat: -rw-r--r-- 3,126 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import ignite.metrics.regression

from ignite.metrics.accumulation import Average, GeometricAverage, VariableAccumulation
from ignite.metrics.accuracy import Accuracy
from ignite.metrics.average_precision import AveragePrecision
from ignite.metrics.classification_report import ClassificationReport
from ignite.metrics.cohen_kappa import CohenKappa
from ignite.metrics.confusion_matrix import ConfusionMatrix, DiceCoefficient, IoU, JaccardIndex, mIoU
from ignite.metrics.cosine_similarity import CosineSimilarity
from ignite.metrics.entropy import Entropy
from ignite.metrics.epoch_metric import EpochMetric
from ignite.metrics.fbeta import Fbeta
from ignite.metrics.frequency import Frequency
from ignite.metrics.gan.fid import FID
from ignite.metrics.gan.inception_score import InceptionScore
from ignite.metrics.gpu_info import GpuInfo
from ignite.metrics.js_divergence import JSDivergence
from ignite.metrics.kl_divergence import KLDivergence
from ignite.metrics.loss import Loss
from ignite.metrics.maximum_mean_discrepancy import MaximumMeanDiscrepancy
from ignite.metrics.mean_absolute_error import MeanAbsoluteError
from ignite.metrics.mean_pairwise_distance import MeanPairwiseDistance
from ignite.metrics.mean_squared_error import MeanSquaredError
from ignite.metrics.metric import BatchFiltered, BatchWise, EpochWise, Metric, MetricUsage
from ignite.metrics.metric_group import MetricGroup
from ignite.metrics.metrics_lambda import MetricsLambda
from ignite.metrics.multilabel_confusion_matrix import MultiLabelConfusionMatrix
from ignite.metrics.mutual_information import MutualInformation
from ignite.metrics.nlp.bleu import Bleu
from ignite.metrics.nlp.rouge import Rouge, RougeL, RougeN
from ignite.metrics.precision import Precision
from ignite.metrics.precision_recall_curve import PrecisionRecallCurve
from ignite.metrics.psnr import PSNR
from ignite.metrics.recall import Recall
from ignite.metrics.roc_auc import ROC_AUC, RocCurve
from ignite.metrics.root_mean_squared_error import RootMeanSquaredError
from ignite.metrics.running_average import RunningAverage
from ignite.metrics.ssim import SSIM
from ignite.metrics.top_k_categorical_accuracy import TopKCategoricalAccuracy

__all__ = [
    "Metric",
    "Accuracy",
    "Loss",
    "MetricGroup",
    "MetricsLambda",
    "MeanAbsoluteError",
    "MeanPairwiseDistance",
    "MeanSquaredError",
    "ConfusionMatrix",
    "CosineSimilarity",
    "ClassificationReport",
    "TopKCategoricalAccuracy",
    "Average",
    "DiceCoefficient",
    "Entropy",
    "EpochMetric",
    "Fbeta",
    "FID",
    "GeometricAverage",
    "IoU",
    "InceptionScore",
    "mIoU",
    "JaccardIndex",
    "JSDivergence",
    "KLDivergence",
    "MaximumMeanDiscrepancy",
    "MultiLabelConfusionMatrix",
    "MutualInformation",
    "Precision",
    "PSNR",
    "Recall",
    "RootMeanSquaredError",
    "RunningAverage",
    "VariableAccumulation",
    "Frequency",
    "SSIM",
    "Bleu",
    "Rouge",
    "RougeN",
    "RougeL",
    "regression",
    "AveragePrecision",
    "CohenKappa",
    "GpuInfo",
    "PrecisionRecallCurve",
    "RocCurve",
    "ROC_AUC",
]