File: accuracy.py

package info (click to toggle)
pytorch-ignite 0.5.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,712 kB
  • sloc: python: 46,874; sh: 376; makefile: 27
file content (265 lines) | stat: -rw-r--r-- 10,168 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
from typing import Callable, Optional, Sequence, Tuple, Union

import torch

from ignite.exceptions import NotComputableError
from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce

__all__ = ["Accuracy"]


class _BaseClassification(Metric):
    def __init__(
        self,
        output_transform: Callable = lambda x: x,
        is_multilabel: bool = False,
        device: Union[str, torch.device] = torch.device("cpu"),
        skip_unrolling: bool = False,
    ):
        self._is_multilabel = is_multilabel
        self._type: Optional[str] = None
        self._num_classes: Optional[int] = None
        super(_BaseClassification, self).__init__(
            output_transform=output_transform, device=device, skip_unrolling=skip_unrolling
        )

    def reset(self) -> None:
        self._type = None
        self._num_classes = None

    def _check_shape(self, output: Sequence[torch.Tensor]) -> None:
        y_pred, y = output

        if not (y.ndimension() == y_pred.ndimension() or y.ndimension() + 1 == y_pred.ndimension()):
            raise ValueError(
                "y must have shape of (batch_size, ...) and y_pred must have "
                "shape of (batch_size, num_categories, ...) or (batch_size, ...), "
                f"but given {y.shape} vs {y_pred.shape}."
            )

        y_shape = y.shape
        y_pred_shape: Tuple[int, ...] = y_pred.shape

        if y.ndimension() + 1 == y_pred.ndimension():
            y_pred_shape = (y_pred_shape[0],) + y_pred_shape[2:]

        if not (y_shape == y_pred_shape):
            raise ValueError("y and y_pred must have compatible shapes.")

        if self._is_multilabel and not (y.shape == y_pred.shape and y.ndimension() > 1 and y.shape[1] > 1):
            raise ValueError(
                "y and y_pred must have same shape of (batch_size, num_categories, ...) and num_categories > 1."
            )

    def _check_binary_multilabel_cases(self, output: Sequence[torch.Tensor]) -> None:
        y_pred, y = output

        if not torch.equal(y, y**2):
            raise ValueError("For binary cases, y must be comprised of 0's and 1's.")

        if not torch.equal(y_pred, y_pred**2):
            raise ValueError("For binary cases, y_pred must be comprised of 0's and 1's.")

    def _check_type(self, output: Sequence[torch.Tensor]) -> None:
        y_pred, y = output

        if y.ndimension() + 1 == y_pred.ndimension():
            num_classes = y_pred.shape[1]
            if num_classes == 1:
                update_type = "binary"
                self._check_binary_multilabel_cases((y_pred, y))
            else:
                update_type = "multiclass"
        elif y.ndimension() == y_pred.ndimension():
            self._check_binary_multilabel_cases((y_pred, y))

            if self._is_multilabel:
                update_type = "multilabel"
                num_classes = y_pred.shape[1]
            else:
                update_type = "binary"
                num_classes = 1
        else:
            raise RuntimeError(
                f"Invalid shapes of y (shape={y.shape}) and y_pred (shape={y_pred.shape}), check documentation."
                " for expected shapes of y and y_pred."
            )
        if self._type is None:
            self._type = update_type
            self._num_classes = num_classes
        else:
            if self._type != update_type:
                raise RuntimeError(f"Input data type has changed from {self._type} to {update_type}.")
            if self._num_classes != num_classes:
                raise ValueError(f"Input data number of classes has changed from {self._num_classes} to {num_classes}")


class Accuracy(_BaseClassification):
    r"""Calculates the accuracy for binary, multiclass and multilabel data.

    .. math:: \text{Accuracy} = \frac{ TP + TN }{ TP + TN + FP + FN }

    where :math:`\text{TP}` is true positives, :math:`\text{TN}` is true negatives,
    :math:`\text{FP}` is false positives and :math:`\text{FN}` is false negatives.

    - ``update`` must receive output of the form ``(y_pred, y)``.
    - `y_pred` must be in the following shape (batch_size, num_categories, ...) or (batch_size, ...).
    - `y` must be in the following shape (batch_size, ...).
    - `y` and `y_pred` must be in the following shape of (batch_size, num_categories, ...) and
      num_categories must be greater than 1 for multilabel cases.

    Args:
        output_transform: a callable that is used to transform the
            :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the
            form expected by the metric. This can be useful if, for example, you have a multi-output model and
            you want to compute the metric with respect to one of the outputs.
        is_multilabel: flag to use in multilabel case. By default, False.
        device: specifies which device updates are accumulated on. Setting the metric's
            device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By
            default, CPU.
        skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be
            true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)``
            Alternatively, ``output_transform`` can be used to handle this.

    Examples:

        For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`.

        .. include:: defaults.rst
            :start-after: :orphan:

        Binary case

        .. testcode:: 1

            metric = Accuracy()
            metric.attach(default_evaluator, "accuracy")
            y_true = torch.tensor([1, 0, 1, 1, 0, 1])
            y_pred = torch.tensor([1, 0, 1, 0, 1, 1])
            state = default_evaluator.run([[y_pred, y_true]])
            print(state.metrics["accuracy"])

        .. testoutput:: 1

            0.6666...

        Multiclass case

        .. testcode:: 2

            metric = Accuracy()
            metric.attach(default_evaluator, "accuracy")
            y_true = torch.tensor([2, 0, 2, 1, 0, 1])
            y_pred = torch.tensor([
                [0.0266, 0.1719, 0.3055],
                [0.6886, 0.3978, 0.8176],
                [0.9230, 0.0197, 0.8395],
                [0.1785, 0.2670, 0.6084],
                [0.8448, 0.7177, 0.7288],
                [0.7748, 0.9542, 0.8573],
            ])
            state = default_evaluator.run([[y_pred, y_true]])
            print(state.metrics["accuracy"])

        .. testoutput:: 2

            0.5

        Multilabel case

        .. testcode:: 3

            metric = Accuracy(is_multilabel=True)
            metric.attach(default_evaluator, "accuracy")
            y_true = torch.tensor([
                [0, 0, 1, 0, 1],
                [1, 0, 1, 0, 0],
                [0, 0, 0, 0, 1],
                [1, 0, 0, 0, 1],
                [0, 1, 1, 0, 1],
            ])
            y_pred = torch.tensor([
                [1, 1, 0, 0, 0],
                [1, 0, 1, 0, 0],
                [1, 0, 0, 0, 0],
                [1, 0, 1, 1, 1],
                [1, 1, 0, 0, 1],
            ])
            state = default_evaluator.run([[y_pred, y_true]])
            print(state.metrics["accuracy"])

        .. testoutput:: 3

            0.2

        In binary and multilabel cases, the elements of `y` and `y_pred` should have 0 or 1 values. Thresholding of
        predictions can be done as below:

        .. testcode:: 4

            def thresholded_output_transform(output):
                y_pred, y = output
                y_pred = torch.round(y_pred)
                return y_pred, y

            metric = Accuracy(output_transform=thresholded_output_transform)
            metric.attach(default_evaluator, "accuracy")
            y_true = torch.tensor([1, 0, 1, 1, 0, 1])
            y_pred = torch.tensor([0.6, 0.2, 0.9, 0.4, 0.7, 0.65])
            state = default_evaluator.run([[y_pred, y_true]])
            print(state.metrics["accuracy"])

        .. testoutput:: 4

            0.6666...

    .. versionchanged:: 0.5.1
        ``skip_unrolling`` argument is added.
    """

    _state_dict_all_req_keys = ("_num_correct", "_num_examples")

    def __init__(
        self,
        output_transform: Callable = lambda x: x,
        is_multilabel: bool = False,
        device: Union[str, torch.device] = torch.device("cpu"),
        skip_unrolling: bool = False,
    ):
        super(Accuracy, self).__init__(
            output_transform=output_transform, is_multilabel=is_multilabel, device=device, skip_unrolling=skip_unrolling
        )

    @reinit__is_reduced
    def reset(self) -> None:
        self._num_correct = torch.tensor(0, device=self._device)
        self._num_examples = 0
        super(Accuracy, self).reset()

    @reinit__is_reduced
    def update(self, output: Sequence[torch.Tensor]) -> None:
        self._check_shape(output)
        self._check_type(output)
        y_pred, y = output[0].detach(), output[1].detach()

        if self._type == "binary":
            correct = torch.eq(y_pred.view(-1).to(y), y.view(-1))
        elif self._type == "multiclass":
            indices = torch.argmax(y_pred, dim=1)
            correct = torch.eq(indices, y).view(-1)
        elif self._type == "multilabel":
            # if y, y_pred shape is (N, C, ...) -> (N x ..., C)
            num_classes = y_pred.size(1)
            last_dim = y_pred.ndimension()
            y_pred = torch.transpose(y_pred, 1, last_dim - 1).reshape(-1, num_classes)
            y = torch.transpose(y, 1, last_dim - 1).reshape(-1, num_classes)
            correct = torch.all(y == y_pred.type_as(y), dim=-1)

        self._num_correct += torch.sum(correct).to(self._device)
        self._num_examples += correct.shape[0]

    @sync_all_reduce("_num_examples", "_num_correct")
    def compute(self) -> float:
        if self._num_examples == 0:
            raise NotComputableError("Accuracy must have at least one example before it can be computed.")
        return self._num_correct.item() / self._num_examples