1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
from typing import Callable, Optional, Sequence, Tuple, Union
import torch
from ignite.exceptions import NotComputableError
from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce
__all__ = ["Accuracy"]
class _BaseClassification(Metric):
def __init__(
self,
output_transform: Callable = lambda x: x,
is_multilabel: bool = False,
device: Union[str, torch.device] = torch.device("cpu"),
skip_unrolling: bool = False,
):
self._is_multilabel = is_multilabel
self._type: Optional[str] = None
self._num_classes: Optional[int] = None
super(_BaseClassification, self).__init__(
output_transform=output_transform, device=device, skip_unrolling=skip_unrolling
)
def reset(self) -> None:
self._type = None
self._num_classes = None
def _check_shape(self, output: Sequence[torch.Tensor]) -> None:
y_pred, y = output
if not (y.ndimension() == y_pred.ndimension() or y.ndimension() + 1 == y_pred.ndimension()):
raise ValueError(
"y must have shape of (batch_size, ...) and y_pred must have "
"shape of (batch_size, num_categories, ...) or (batch_size, ...), "
f"but given {y.shape} vs {y_pred.shape}."
)
y_shape = y.shape
y_pred_shape: Tuple[int, ...] = y_pred.shape
if y.ndimension() + 1 == y_pred.ndimension():
y_pred_shape = (y_pred_shape[0],) + y_pred_shape[2:]
if not (y_shape == y_pred_shape):
raise ValueError("y and y_pred must have compatible shapes.")
if self._is_multilabel and not (y.shape == y_pred.shape and y.ndimension() > 1 and y.shape[1] > 1):
raise ValueError(
"y and y_pred must have same shape of (batch_size, num_categories, ...) and num_categories > 1."
)
def _check_binary_multilabel_cases(self, output: Sequence[torch.Tensor]) -> None:
y_pred, y = output
if not torch.equal(y, y**2):
raise ValueError("For binary cases, y must be comprised of 0's and 1's.")
if not torch.equal(y_pred, y_pred**2):
raise ValueError("For binary cases, y_pred must be comprised of 0's and 1's.")
def _check_type(self, output: Sequence[torch.Tensor]) -> None:
y_pred, y = output
if y.ndimension() + 1 == y_pred.ndimension():
num_classes = y_pred.shape[1]
if num_classes == 1:
update_type = "binary"
self._check_binary_multilabel_cases((y_pred, y))
else:
update_type = "multiclass"
elif y.ndimension() == y_pred.ndimension():
self._check_binary_multilabel_cases((y_pred, y))
if self._is_multilabel:
update_type = "multilabel"
num_classes = y_pred.shape[1]
else:
update_type = "binary"
num_classes = 1
else:
raise RuntimeError(
f"Invalid shapes of y (shape={y.shape}) and y_pred (shape={y_pred.shape}), check documentation."
" for expected shapes of y and y_pred."
)
if self._type is None:
self._type = update_type
self._num_classes = num_classes
else:
if self._type != update_type:
raise RuntimeError(f"Input data type has changed from {self._type} to {update_type}.")
if self._num_classes != num_classes:
raise ValueError(f"Input data number of classes has changed from {self._num_classes} to {num_classes}")
class Accuracy(_BaseClassification):
r"""Calculates the accuracy for binary, multiclass and multilabel data.
.. math:: \text{Accuracy} = \frac{ TP + TN }{ TP + TN + FP + FN }
where :math:`\text{TP}` is true positives, :math:`\text{TN}` is true negatives,
:math:`\text{FP}` is false positives and :math:`\text{FN}` is false negatives.
- ``update`` must receive output of the form ``(y_pred, y)``.
- `y_pred` must be in the following shape (batch_size, num_categories, ...) or (batch_size, ...).
- `y` must be in the following shape (batch_size, ...).
- `y` and `y_pred` must be in the following shape of (batch_size, num_categories, ...) and
num_categories must be greater than 1 for multilabel cases.
Args:
output_transform: a callable that is used to transform the
:class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the
form expected by the metric. This can be useful if, for example, you have a multi-output model and
you want to compute the metric with respect to one of the outputs.
is_multilabel: flag to use in multilabel case. By default, False.
device: specifies which device updates are accumulated on. Setting the metric's
device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By
default, CPU.
skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be
true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)``
Alternatively, ``output_transform`` can be used to handle this.
Examples:
For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`.
.. include:: defaults.rst
:start-after: :orphan:
Binary case
.. testcode:: 1
metric = Accuracy()
metric.attach(default_evaluator, "accuracy")
y_true = torch.tensor([1, 0, 1, 1, 0, 1])
y_pred = torch.tensor([1, 0, 1, 0, 1, 1])
state = default_evaluator.run([[y_pred, y_true]])
print(state.metrics["accuracy"])
.. testoutput:: 1
0.6666...
Multiclass case
.. testcode:: 2
metric = Accuracy()
metric.attach(default_evaluator, "accuracy")
y_true = torch.tensor([2, 0, 2, 1, 0, 1])
y_pred = torch.tensor([
[0.0266, 0.1719, 0.3055],
[0.6886, 0.3978, 0.8176],
[0.9230, 0.0197, 0.8395],
[0.1785, 0.2670, 0.6084],
[0.8448, 0.7177, 0.7288],
[0.7748, 0.9542, 0.8573],
])
state = default_evaluator.run([[y_pred, y_true]])
print(state.metrics["accuracy"])
.. testoutput:: 2
0.5
Multilabel case
.. testcode:: 3
metric = Accuracy(is_multilabel=True)
metric.attach(default_evaluator, "accuracy")
y_true = torch.tensor([
[0, 0, 1, 0, 1],
[1, 0, 1, 0, 0],
[0, 0, 0, 0, 1],
[1, 0, 0, 0, 1],
[0, 1, 1, 0, 1],
])
y_pred = torch.tensor([
[1, 1, 0, 0, 0],
[1, 0, 1, 0, 0],
[1, 0, 0, 0, 0],
[1, 0, 1, 1, 1],
[1, 1, 0, 0, 1],
])
state = default_evaluator.run([[y_pred, y_true]])
print(state.metrics["accuracy"])
.. testoutput:: 3
0.2
In binary and multilabel cases, the elements of `y` and `y_pred` should have 0 or 1 values. Thresholding of
predictions can be done as below:
.. testcode:: 4
def thresholded_output_transform(output):
y_pred, y = output
y_pred = torch.round(y_pred)
return y_pred, y
metric = Accuracy(output_transform=thresholded_output_transform)
metric.attach(default_evaluator, "accuracy")
y_true = torch.tensor([1, 0, 1, 1, 0, 1])
y_pred = torch.tensor([0.6, 0.2, 0.9, 0.4, 0.7, 0.65])
state = default_evaluator.run([[y_pred, y_true]])
print(state.metrics["accuracy"])
.. testoutput:: 4
0.6666...
.. versionchanged:: 0.5.1
``skip_unrolling`` argument is added.
"""
_state_dict_all_req_keys = ("_num_correct", "_num_examples")
def __init__(
self,
output_transform: Callable = lambda x: x,
is_multilabel: bool = False,
device: Union[str, torch.device] = torch.device("cpu"),
skip_unrolling: bool = False,
):
super(Accuracy, self).__init__(
output_transform=output_transform, is_multilabel=is_multilabel, device=device, skip_unrolling=skip_unrolling
)
@reinit__is_reduced
def reset(self) -> None:
self._num_correct = torch.tensor(0, device=self._device)
self._num_examples = 0
super(Accuracy, self).reset()
@reinit__is_reduced
def update(self, output: Sequence[torch.Tensor]) -> None:
self._check_shape(output)
self._check_type(output)
y_pred, y = output[0].detach(), output[1].detach()
if self._type == "binary":
correct = torch.eq(y_pred.view(-1).to(y), y.view(-1))
elif self._type == "multiclass":
indices = torch.argmax(y_pred, dim=1)
correct = torch.eq(indices, y).view(-1)
elif self._type == "multilabel":
# if y, y_pred shape is (N, C, ...) -> (N x ..., C)
num_classes = y_pred.size(1)
last_dim = y_pred.ndimension()
y_pred = torch.transpose(y_pred, 1, last_dim - 1).reshape(-1, num_classes)
y = torch.transpose(y, 1, last_dim - 1).reshape(-1, num_classes)
correct = torch.all(y == y_pred.type_as(y), dim=-1)
self._num_correct += torch.sum(correct).to(self._device)
self._num_examples += correct.shape[0]
@sync_all_reduce("_num_examples", "_num_correct")
def compute(self) -> float:
if self._num_examples == 0:
raise NotComputableError("Accuracy must have at least one example before it can be computed.")
return self._num_correct.item() / self._num_examples
|