1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
|
import numbers
from typing import Callable, Optional, Sequence, Tuple, Union
import torch
from ignite.exceptions import NotComputableError
from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce
from ignite.metrics.metrics_lambda import MetricsLambda
__all__ = ["ConfusionMatrix", "mIoU", "IoU", "DiceCoefficient", "cmAccuracy", "cmPrecision", "cmRecall", "JaccardIndex"]
class ConfusionMatrix(Metric):
"""Calculates confusion matrix for multi-class data.
- ``update`` must receive output of the form ``(y_pred, y)``.
- `y_pred` must contain logits and has the following shape (batch_size, num_classes, ...).
If you are doing binary classification, see Note for an example on how to get this.
- `y` should have the following shape (batch_size, ...) and contains ground-truth class indices
with or without the background class. During the computation, argmax of `y_pred` is taken to determine
predicted classes.
Args:
num_classes: Number of classes, should be > 1. See notes for more details.
average: confusion matrix values averaging schema: None, "samples", "recall", "precision".
Default is None. If `average="samples"` then confusion matrix values are normalized by the number of seen
samples. If `average="recall"` then confusion matrix values are normalized such that diagonal values
represent class recalls. If `average="precision"` then confusion matrix values are normalized such that
diagonal values represent class precisions.
output_transform: a callable that is used to transform the
:class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the
form expected by the metric. This can be useful if, for example, you have a multi-output model and
you want to compute the metric with respect to one of the outputs.
device: specifies which device updates are accumulated on. Setting the metric's
device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By
default, CPU.
skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be
true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)``
Alternatively, ``output_transform`` can be used to handle this.
Note:
The confusion matrix is formatted such that columns are predictions and rows are targets.
For example, if you were to plot the matrix, you could correctly assign to the horizontal axis
the label "predicted values" and to the vertical axis the label "actual values".
Note:
In case of the targets `y` in `(batch_size, ...)` format, target indices between 0 and `num_classes` only
contribute to the confusion matrix and others are neglected. For example, if `num_classes=20` and target index
equal 255 is encountered, then it is filtered out.
Examples:
For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`.
.. include:: defaults.rst
:start-after: :orphan:
.. testcode:: 1
metric = ConfusionMatrix(num_classes=3)
metric.attach(default_evaluator, 'cm')
y_true = torch.tensor([0, 1, 0, 1, 2])
y_pred = torch.tensor([
[0.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
])
state = default_evaluator.run([[y_pred, y_true]])
print(state.metrics['cm'])
.. testoutput:: 1
tensor([[1, 1, 0],
[0, 2, 0],
[0, 1, 0]])
If you are doing binary classification with a single output unit, you may have to transform your network output,
so that you have one value for each class. E.g. you can transform your network output into a one-hot vector
with:
.. testcode:: 2
def binary_one_hot_output_transform(output):
from ignite import utils
y_pred, y = output
y_pred = torch.sigmoid(y_pred).round().long()
y_pred = utils.to_onehot(y_pred, 2)
y = y.long()
return y_pred, y
metric = ConfusionMatrix(num_classes=2, output_transform=binary_one_hot_output_transform)
metric.attach(default_evaluator, 'cm')
y_true = torch.tensor([0, 1, 0, 1, 0])
y_pred = torch.tensor([0, 0, 1, 1, 0])
state = default_evaluator.run([[y_pred, y_true]])
print(state.metrics['cm'])
.. testoutput:: 2
tensor([[2, 1],
[1, 1]])
.. versionchanged:: 0.5.1
``skip_unrolling`` argument is added.
"""
_state_dict_all_req_keys = ("confusion_matrix", "_num_examples")
def __init__(
self,
num_classes: int,
average: Optional[str] = None,
output_transform: Callable = lambda x: x,
device: Union[str, torch.device] = torch.device("cpu"),
skip_unrolling: bool = True,
):
if average is not None and average not in ("samples", "recall", "precision"):
raise ValueError("Argument average can None or one of 'samples', 'recall', 'precision'")
if num_classes <= 1:
raise ValueError("Argument num_classes needs to be > 1")
self.num_classes = num_classes
self._num_examples = 0
self.average = average
super(ConfusionMatrix, self).__init__(
output_transform=output_transform, device=device, skip_unrolling=skip_unrolling
)
@reinit__is_reduced
def reset(self) -> None:
self.confusion_matrix = torch.zeros(self.num_classes, self.num_classes, dtype=torch.int64, device=self._device)
self._num_examples = 0
def _check_shape(self, output: Sequence[torch.Tensor]) -> None:
y_pred, y = output[0].detach(), output[1].detach()
if y_pred.ndimension() < 2:
raise ValueError(
f"y_pred must have shape (batch_size, num_classes (currently set to {self.num_classes}), ...), "
f"but given {y_pred.shape}"
)
if y_pred.shape[1] != self.num_classes:
raise ValueError(f"y_pred does not have correct number of classes: {y_pred.shape[1]} vs {self.num_classes}")
if not (y.ndimension() + 1 == y_pred.ndimension()):
raise ValueError(
f"y_pred must have shape (batch_size, num_classes (currently set to {self.num_classes}), ...) "
"and y must have shape of (batch_size, ...), "
f"but given {y.shape} vs {y_pred.shape}."
)
y_shape = y.shape
y_pred_shape: Tuple[int, ...] = y_pred.shape
if y.ndimension() + 1 == y_pred.ndimension():
y_pred_shape = (y_pred_shape[0],) + y_pred_shape[2:]
if y_shape != y_pred_shape:
raise ValueError("y and y_pred must have compatible shapes.")
@reinit__is_reduced
def update(self, output: Sequence[torch.Tensor]) -> None:
self._check_shape(output)
y_pred, y = output[0].detach(), output[1].detach()
self._num_examples += y_pred.shape[0]
# target is (batch_size, ...)
y_pred = torch.argmax(y_pred, dim=1).flatten()
y = y.flatten()
target_mask = (y >= 0) & (y < self.num_classes)
y = y[target_mask]
y_pred = y_pred[target_mask]
indices = self.num_classes * y + y_pred
m = torch.bincount(indices, minlength=self.num_classes**2).reshape(self.num_classes, self.num_classes)
self.confusion_matrix += m.to(self.confusion_matrix)
@sync_all_reduce("confusion_matrix", "_num_examples")
def compute(self) -> torch.Tensor:
if self._num_examples == 0:
raise NotComputableError("Confusion matrix must have at least one example before it can be computed.")
if self.average:
self.confusion_matrix = self.confusion_matrix.float()
if self.average == "samples":
return self.confusion_matrix / self._num_examples
else:
return self.normalize(self.confusion_matrix, self.average)
return self.confusion_matrix
@staticmethod
def normalize(matrix: torch.Tensor, average: str) -> torch.Tensor:
"""Normalize given `matrix` with given `average`."""
if average == "recall":
return matrix / (matrix.sum(dim=1).unsqueeze(1) + 1e-15)
elif average == "precision":
return matrix / (matrix.sum(dim=0) + 1e-15)
else:
raise ValueError("Argument average should be one of 'samples', 'recall', 'precision'")
def IoU(cm: ConfusionMatrix, ignore_index: Optional[int] = None) -> MetricsLambda:
r"""Calculates Intersection over Union using :class:`~ignite.metrics.confusion_matrix.ConfusionMatrix` metric.
.. math:: \text{J}(A, B) = \frac{ \lvert A \cap B \rvert }{ \lvert A \cup B \rvert }
Args:
cm: instance of confusion matrix metric
ignore_index: index to ignore, e.g. background index
Returns:
MetricsLambda
Examples:
For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`.
.. include:: defaults.rst
:start-after: :orphan:
.. testcode::
cm = ConfusionMatrix(num_classes=3)
metric = IoU(cm)
metric.attach(default_evaluator, 'iou')
y_true = torch.tensor([0, 1, 0, 1, 2])
y_pred = torch.tensor([
[0.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
])
state = default_evaluator.run([[y_pred, y_true]])
print(state.metrics['iou'])
.. testoutput::
tensor([0.5000, 0.5000, 0.0000], dtype=torch.float64)
"""
if not isinstance(cm, ConfusionMatrix):
raise TypeError(f"Argument cm should be instance of ConfusionMatrix, but given {type(cm)}")
if not (cm.average in (None, "samples")):
raise ValueError("ConfusionMatrix should have average attribute either None or 'samples'")
if ignore_index is not None:
if not (isinstance(ignore_index, numbers.Integral) and 0 <= ignore_index < cm.num_classes):
raise ValueError(
f"ignore_index should be integer and in the range of [0, {cm.num_classes}), but given {ignore_index}"
)
# Increase floating point precision and pass to CPU
cm = cm.to(torch.double)
iou: MetricsLambda = cm.diag() / (cm.sum(dim=1) + cm.sum(dim=0) - cm.diag() + 1e-15)
if ignore_index is not None:
ignore_idx: int = ignore_index # used due to typing issues with mympy
def ignore_index_fn(iou_vector: torch.Tensor) -> torch.Tensor:
if ignore_idx >= len(iou_vector):
raise ValueError(f"ignore_index {ignore_idx} is larger than the length of IoU vector {len(iou_vector)}")
indices = list(range(len(iou_vector)))
indices.remove(ignore_idx)
return iou_vector[indices]
return MetricsLambda(ignore_index_fn, iou)
else:
return iou
def mIoU(cm: ConfusionMatrix, ignore_index: Optional[int] = None) -> MetricsLambda:
"""Calculates mean Intersection over Union using :class:`~ignite.metrics.confusion_matrix.ConfusionMatrix` metric.
Args:
cm: instance of confusion matrix metric
ignore_index: index to ignore, e.g. background index
Returns:
MetricsLambda
Examples:
For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`.
.. include:: defaults.rst
:start-after: :orphan:
.. testcode::
cm = ConfusionMatrix(num_classes=3)
metric = mIoU(cm, ignore_index=0)
metric.attach(default_evaluator, 'miou')
y_true = torch.tensor([0, 1, 0, 1, 2])
y_pred = torch.tensor([
[0.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
])
state = default_evaluator.run([[y_pred, y_true]])
print(state.metrics['miou'])
.. testoutput::
0.24999...
"""
iou: MetricsLambda = IoU(cm=cm, ignore_index=ignore_index).mean()
return iou
def cmAccuracy(cm: ConfusionMatrix) -> MetricsLambda:
"""Calculates accuracy using :class:`~ignite.metrics.metric.ConfusionMatrix` metric.
Args:
cm: instance of confusion matrix metric
Returns:
MetricsLambda
"""
# Increase floating point precision and pass to CPU
cm = cm.to(torch.double)
accuracy: MetricsLambda = cm.diag().sum() / (cm.sum() + 1e-15)
return accuracy
def cmPrecision(cm: ConfusionMatrix, average: bool = True) -> MetricsLambda:
"""Calculates precision using :class:`~ignite.metrics.metric.ConfusionMatrix` metric.
Args:
cm: instance of confusion matrix metric
average: if True metric value is averaged over all classes
Returns:
MetricsLambda
"""
# Increase floating point precision and pass to CPU
cm = cm.to(torch.double)
precision: MetricsLambda = cm.diag() / (cm.sum(dim=0) + 1e-15)
if average:
mean: MetricsLambda = precision.mean()
return mean
return precision
def cmRecall(cm: ConfusionMatrix, average: bool = True) -> MetricsLambda:
"""
Calculates recall using :class:`~ignite.metrics.confusion_matrix.ConfusionMatrix` metric.
Args:
cm: instance of confusion matrix metric
average: if True metric value is averaged over all classes
Returns:
MetricsLambda
"""
# Increase floating point precision and pass to CPU
cm = cm.to(torch.double)
recall: MetricsLambda = cm.diag() / (cm.sum(dim=1) + 1e-15)
if average:
mean: MetricsLambda = recall.mean()
return mean
return recall
def DiceCoefficient(cm: ConfusionMatrix, ignore_index: Optional[int] = None) -> MetricsLambda:
"""Calculates Dice Coefficient for a given :class:`~ignite.metrics.confusion_matrix.ConfusionMatrix` metric.
Args:
cm: instance of confusion matrix metric
ignore_index: index to ignore, e.g. background index
Examples:
For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`.
.. include:: defaults.rst
:start-after: :orphan:
.. testcode::
cm = ConfusionMatrix(num_classes=3)
metric = DiceCoefficient(cm, ignore_index=0)
metric.attach(default_evaluator, 'dice')
y_true = torch.tensor([0, 1, 0, 1, 2])
y_pred = torch.tensor([
[0.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
])
state = default_evaluator.run([[y_pred, y_true]])
print(state.metrics['dice'])
.. testoutput::
tensor([0.6667, 0.0000], dtype=torch.float64)
"""
if not isinstance(cm, ConfusionMatrix):
raise TypeError(f"Argument cm should be instance of ConfusionMatrix, but given {type(cm)}")
if ignore_index is not None:
if not (isinstance(ignore_index, numbers.Integral) and 0 <= ignore_index < cm.num_classes):
raise ValueError(
f"ignore_index should be integer and in the range of [0, {cm.num_classes}), but given {ignore_index}"
)
# Increase floating point precision and pass to CPU
cm = cm.to(torch.double)
dice: MetricsLambda = 2.0 * cm.diag() / (cm.sum(dim=1) + cm.sum(dim=0) + 1e-15)
if ignore_index is not None:
ignore_idx: int = ignore_index # used due to typing issues with mympy
def ignore_index_fn(dice_vector: torch.Tensor) -> torch.Tensor:
if ignore_idx >= len(dice_vector):
raise ValueError(
f"ignore_index {ignore_idx} is larger than the length of Dice vector {len(dice_vector)}"
)
indices = list(range(len(dice_vector)))
indices.remove(ignore_idx)
return dice_vector[indices]
return MetricsLambda(ignore_index_fn, dice)
else:
return dice
def JaccardIndex(cm: ConfusionMatrix, ignore_index: Optional[int] = None) -> MetricsLambda:
r"""Calculates the Jaccard Index using :class:`~ignite.metrics.confusion_matrix.ConfusionMatrix` metric.
Implementation is based on :meth:`~ignite.metrics.IoU`.
.. math:: \text{J}(A, B) = \frac{ \lvert A \cap B \rvert }{ \lvert A \cup B \rvert }
Args:
cm: instance of confusion matrix metric
ignore_index: index to ignore, e.g. background index
Returns:
MetricsLambda
Examples:
For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`.
.. include:: defaults.rst
:start-after: :orphan:
.. testcode::
cm = ConfusionMatrix(num_classes=3)
metric = JaccardIndex(cm, ignore_index=0)
metric.attach(default_evaluator, 'jac')
y_true = torch.tensor([0, 1, 0, 1, 2])
y_pred = torch.tensor([
[0.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
])
state = default_evaluator.run([[y_pred, y_true]])
print(state.metrics['jac'])
.. testoutput::
tensor([0.5000, 0.0000], dtype=torch.float64)
"""
return IoU(cm, ignore_index)
|