File: metric.py

package info (click to toggle)
pytorch-ignite 0.5.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,712 kB
  • sloc: python: 46,874; sh: 376; makefile: 27
file content (879 lines) | stat: -rw-r--r-- 34,753 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
from abc import ABCMeta, abstractmethod
from collections import OrderedDict
from collections.abc import Mapping
from functools import wraps
from numbers import Number
from typing import Any, Callable, cast, Dict, List, Optional, Sequence, Tuple, TYPE_CHECKING, Union

import torch

import ignite.distributed as idist

from ignite.base.mixins import Serializable
from ignite.engine import CallableEventWithFilter, Engine, Events
from ignite.utils import _CollectionItem, _tree_apply2, _tree_map

if TYPE_CHECKING:
    from ignite.metrics.metrics_lambda import MetricsLambda

__all__ = [
    "Metric",
    "MetricUsage",
    "EpochWise",
    "BatchWise",
    "BatchFiltered",
    "RunningEpochWise",
    "RunningBatchWise",
    "SingleEpochRunningBatchWise",
]


class MetricUsage:
    """
    Base class for all usages of metrics.

    A usage of metric defines the events when a metric starts to compute, updates and completes.
    Valid events are from :class:`~ignite.engine.events.Events`.

    Args:
        started: event when the metric starts to compute. This event will be associated to
            :meth:`~ignite.metrics.metric.Metric.started`.
        completed: event when the metric completes. This event will be associated to
            :meth:`~ignite.metrics.metric.Metric.completed`.
        iteration_completed: event when the metric updates. This event will be associated to
            :meth:`~ignite.metrics.metric.Metric.iteration_completed`.
    """

    usage_name: str

    def __init__(self, started: Events, completed: Events, iteration_completed: CallableEventWithFilter) -> None:
        self.__started = started
        self.__completed = completed
        self.__iteration_completed = iteration_completed

    @property
    def STARTED(self) -> Events:
        return self.__started

    @property
    def COMPLETED(self) -> Events:
        return self.__completed

    @property
    def ITERATION_COMPLETED(self) -> CallableEventWithFilter:
        return self.__iteration_completed


class EpochWise(MetricUsage):
    """
    Epoch-wise usage of Metrics. It's the default and most common usage of metrics.

    Metric's methods are triggered on the following engine events:

    - :meth:`~ignite.metrics.metric.Metric.started` on every ``EPOCH_STARTED``
      (See :class:`~ignite.engine.events.Events`).
    - :meth:`~ignite.metrics.metric.Metric.iteration_completed` on every ``ITERATION_COMPLETED``.
    - :meth:`~ignite.metrics.metric.Metric.completed` on every ``EPOCH_COMPLETED``.

    Attributes:
        usage_name: usage name string
    """

    usage_name: str = "epoch_wise"

    def __init__(self) -> None:
        super(EpochWise, self).__init__(
            started=Events.EPOCH_STARTED,
            completed=Events.EPOCH_COMPLETED,
            iteration_completed=Events.ITERATION_COMPLETED,
        )


class RunningEpochWise(EpochWise):
    """
    Running epoch-wise usage of Metrics. It's the running version of the :class:`~.metrics.metric.EpochWise` metric
    usage. A metric with such a usage most likely accompanies an :class:`~.metrics.metric.EpochWise` one to compute
    a running measure of it e.g. running average.

    Metric's methods are triggered on the following engine events:

    - :meth:`~ignite.metrics.metric.Metric.started` on every ``STARTED``
      (See :class:`~ignite.engine.events.Events`).
    - :meth:`~ignite.metrics.metric.Metric.iteration_completed` on every ``EPOCH_COMPLETED``.
    - :meth:`~ignite.metrics.metric.Metric.completed` on every ``EPOCH_COMPLETED``.

    Attributes:
        usage_name: usage name string
    """

    usage_name: str = "running_epoch_wise"

    def __init__(self) -> None:
        super(EpochWise, self).__init__(
            started=Events.STARTED,
            completed=Events.EPOCH_COMPLETED,
            iteration_completed=Events.EPOCH_COMPLETED,
        )


class BatchWise(MetricUsage):
    """
    Batch-wise usage of Metrics.

    Metric's methods are triggered on the following engine events:

    - :meth:`~ignite.metrics.metric.Metric.started` on every ``ITERATION_STARTED``
      (See :class:`~ignite.engine.events.Events`).
    - :meth:`~ignite.metrics.metric.Metric.iteration_completed` on every ``ITERATION_COMPLETED``.
    - :meth:`~ignite.metrics.metric.Metric.completed` on every ``ITERATION_COMPLETED``.

    Attributes:
        usage_name: usage name string
    """

    usage_name: str = "batch_wise"

    def __init__(self) -> None:
        super(BatchWise, self).__init__(
            started=Events.ITERATION_STARTED,
            completed=Events.ITERATION_COMPLETED,
            iteration_completed=Events.ITERATION_COMPLETED,
        )


class RunningBatchWise(BatchWise):
    """
    Running batch-wise usage of Metrics. It's the running version of the :class:`~.metrics.metric.EpochWise` metric
    usage. A metric with such a usage could for example accompany a :class:`~.metrics.metric.BatchWise` one to compute
    a running measure of it e.g. running average.

    Metric's methods are triggered on the following engine events:

    - :meth:`~ignite.metrics.metric.Metric.started` on every ``STARTED``
      (See :class:`~ignite.engine.events.Events`).
    - :meth:`~ignite.metrics.metric.Metric.iteration_completed` on every ``ITERATION_COMPLETED``.
    - :meth:`~ignite.metrics.metric.Metric.completed` on every ``ITERATION_COMPLETED``.

    Attributes:
        usage_name: usage name string
    """

    usage_name: str = "running_batch_wise"

    def __init__(self) -> None:
        super(BatchWise, self).__init__(
            started=Events.STARTED,
            completed=Events.ITERATION_COMPLETED,
            iteration_completed=Events.ITERATION_COMPLETED,
        )


class SingleEpochRunningBatchWise(BatchWise):
    """
    Running batch-wise usage of Metrics in a single epoch. It's like :class:`~.metrics.metric.RunningBatchWise` metric
    usage with the difference that is used during a single epoch.

    Metric's methods are triggered on the following engine events:

    - :meth:`~ignite.metrics.metric.Metric.started` on every ``EPOCH_STARTED``
      (See :class:`~ignite.engine.events.Events`).
    - :meth:`~ignite.metrics.metric.Metric.iteration_completed` on every ``ITERATION_COMPLETED``.
    - :meth:`~ignite.metrics.metric.Metric.completed` on every ``ITERATION_COMPLETED``.

    Attributes:
        usage_name: usage name string
    """

    usage_name: str = "single_epoch_running_batch_wise"

    def __init__(self) -> None:
        super(BatchWise, self).__init__(
            started=Events.EPOCH_STARTED,
            completed=Events.ITERATION_COMPLETED,
            iteration_completed=Events.ITERATION_COMPLETED,
        )


class BatchFiltered(MetricUsage):
    """
    Batch filtered usage of Metrics. This usage is similar to epoch-wise but update event is filtered.

    Metric's methods are triggered on the following engine events:

    - :meth:`~ignite.metrics.metric.Metric.started` on every ``EPOCH_STARTED``
      (See :class:`~ignite.engine.events.Events`).
    - :meth:`~ignite.metrics.metric.Metric.iteration_completed` on filtered ``ITERATION_COMPLETED``.
    - :meth:`~ignite.metrics.metric.Metric.completed` on every ``EPOCH_COMPLETED``.

    Args:
        args: Positional arguments to setup :attr:`~ignite.engine.events.Events.ITERATION_COMPLETED`
        kwargs: Keyword arguments to setup :attr:`~ignite.engine.events.Events.ITERATION_COMPLETED`
            handled by :meth:`~ignite.metrics.metric.Metric.iteration_completed`.

    """

    def __init__(self, *args: Any, **kwargs: Any) -> None:
        super(BatchFiltered, self).__init__(
            started=Events.EPOCH_STARTED,
            completed=Events.EPOCH_COMPLETED,
            iteration_completed=Events.ITERATION_COMPLETED(*args, **kwargs),
        )


class Metric(Serializable, metaclass=ABCMeta):
    """
    Base class for all Metrics.

    Args:
        output_transform: a callable that is used to transform the
            :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the
            form expected by the metric. This can be useful if, for example, you have a multi-output model and
            you want to compute the metric with respect to one of the outputs.
            By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``.
        device: specifies which device updates are accumulated on. Setting the
            metric's device to be the same as your ``update`` arguments ensures the ``update`` method is
            non-blocking. By default, CPU.
        skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be
            true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)``
            Alternatively, ``output_transform`` can be used to handle this.

            Examples:
                The following example shows a custom loss metric that expects input from a multi-output model.

                .. code-block:: python

                    import torch
                    import torch.nn as nn
                    import torch.nn.functional as F

                    from ignite.engine import create_supervised_evaluator
                    from ignite.metrics import Loss

                    class MyLoss(nn.Module):
                        def __init__(self, ca: float = 1.0, cb: float = 1.0) -> None:
                            super().__init__()
                            self.ca = ca
                            self.cb = cb

                        def forward(self,
                                    y_pred: Tuple[torch.Tensor, torch.Tensor],
                                    y_true: Tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
                            a_true, b_true = y_true
                            a_pred, b_pred = y_pred
                            return self.ca * F.mse_loss(a_pred, a_true) + self.cb * F.cross_entropy(b_pred, b_true)


                    def prepare_batch(batch, device, non_blocking):
                        return torch.rand(4, 1), (torch.rand(4, 1), torch.rand(4, 2))


                    class MyModel(nn.Module):

                        def forward(self, x):
                            return torch.rand(4, 1), torch.rand(4, 2)


                    model = MyModel()

                    device = "cpu"
                    loss = MyLoss(0.5, 1.0)
                    metrics = {
                        "Loss": Loss(loss, skip_unrolling=True)
                    }
                    train_evaluator = create_supervised_evaluator(model, metrics, device, prepare_batch=prepare_batch)


                    data = range(10)
                    train_evaluator.run(data)
                    train_evaluator.state.metrics["Loss"]

    Attributes:
        required_output_keys: dictionary defines required keys to be found in ``engine.state.output`` if the
            latter is a dictionary. By default, ``("y_pred", "y")``. This is useful with custom metrics that can require
            other arguments than predictions ``y_pred`` and targets ``y``. See an example below.

    Examples:
        Let's implement a custom metric that requires ``y_pred``, ``y`` and ``x`` as input for ``update`` function.
        In the example below we show how to setup standard metric like Accuracy and the custom metric using by an
        ``evaluator`` created with :meth:`~ignite.engine.create_supervised_evaluator` method.

        For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`.

        .. code-block:: python

            # https://discuss.pytorch.org/t/how-access-inputs-in-custom-ignite-metric/91221/5

            import torch
            import torch.nn as nn

            from ignite.metrics import Metric, Accuracy
            from ignite.engine import create_supervised_evaluator

            class CustomMetric(Metric):

                required_output_keys = ("y_pred", "y", "x")

                def __init__(self, *args, **kwargs):
                    super().__init__(*args, **kwargs)

                def update(self, output):
                    y_pred, y, x = output
                    # ...

                def reset(self):
                    # ...
                    pass

                def compute(self):
                    # ...
                    pass

            model = ...

            metrics = {
                "Accuracy": Accuracy(),
                "CustomMetric": CustomMetric()
            }

            evaluator = create_supervised_evaluator(
                model,
                metrics=metrics,
                output_transform=lambda x, y, y_pred: {"x": x, "y": y, "y_pred": y_pred}
            )

            res = evaluator.run(data)

    .. versionchanged:: 0.4.2
        ``required_output_keys`` became public attribute.

    .. versionchanged:: 0.5.1
        ``skip_unrolling`` argument is added.
    """

    # public class attribute
    required_output_keys: Optional[Tuple] = ("y_pred", "y")
    # for backward compatibility
    _required_output_keys = required_output_keys

    def __init__(
        self,
        output_transform: Callable = lambda x: x,
        device: Union[str, torch.device] = torch.device("cpu"),
        skip_unrolling: bool = False,
    ):
        self._output_transform = output_transform

        # Some metrics have a large performance regression when run on XLA devices, so for now, we disallow it.
        if torch.device(device).type == "xla":
            raise ValueError("Cannot create metric on an XLA device. Use device='cpu' instead.")

        self._device = torch.device(device)
        self._skip_unrolling = skip_unrolling
        self.reset()

    @abstractmethod
    def reset(self) -> None:
        """
        Resets the metric to its initial state.

        By default, this is called at the start of each epoch.
        """
        pass

    @abstractmethod
    def update(self, output: Any) -> None:
        """
        Updates the metric's state using the passed batch output.

        By default, this is called once for each batch.

        Args:
            output: the is the output from the engine's process function.
        """
        pass

    @abstractmethod
    def compute(self) -> Any:
        """
        Computes the metric based on its accumulated state.

        By default, this is called at the end of each epoch.

        Returns:
            Any: | the actual quantity of interest. However, if a :class:`~collections.abc.Mapping` is returned,
                 it will be (shallow) flattened into `engine.state.metrics` when
                 :func:`~ignite.metrics.metric.Metric.completed` is called.

        Raises:
            NotComputableError: raised when the metric cannot be computed.
        """
        pass

    def started(self, engine: Engine) -> None:
        """Helper method to start data gathering for metric's computation. It is automatically attached to the
        `engine` with :meth:`~ignite.metrics.metric.Metric.attach`.

        Args:
            engine: the engine to which the metric must be attached
        """
        self.reset()

    @torch.no_grad()
    def iteration_completed(self, engine: Engine) -> None:
        """Helper method to update metric's computation. It is automatically attached to the
        `engine` with :meth:`~ignite.metrics.metric.Metric.attach`.

        Args:
            engine: the engine to which the metric must be attached

        Note:
            ``engine.state.output`` is used to compute metric values.
            The majority of implemented metrics accept the following formats for ``engine.state.output``:
            ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. ``y_pred`` and ``y`` can be torch tensors or
            list of tensors/numbers if applicable.

        .. versionchanged:: 0.4.5
            ``y_pred`` and ``y`` can be torch tensors or list of tensors/numbers
        """

        output = self._output_transform(engine.state.output)
        if isinstance(output, Mapping):
            if self.required_output_keys is None:
                raise TypeError(
                    f"Transformed engine output for {self.__class__.__name__} metric should be a tuple/list, "
                    f"but given {type(output)}"
                )
            if not all([k in output for k in self.required_output_keys]):
                raise ValueError(
                    "When transformed engine's output is a mapping, "
                    f"it should contain {self.required_output_keys} keys, but given {list(output.keys())}"
                )
            output = tuple(output[k] for k in self.required_output_keys)

        if (
            (not self._skip_unrolling)
            and isinstance(output, Sequence)
            and all([_is_list_of_tensors_or_numbers(o) for o in output])
        ):
            if not (len(output) == 2 and len(output[0]) == len(output[1])):
                raise ValueError(
                    f"Output should have 2 items of the same length, "
                    f"got {len(output)} and {len(output[0])}, {len(output[1])}"
                )
            for o1, o2 in zip(output[0], output[1]):
                # o1 and o2 are list of tensors or numbers
                tensor_o1 = _to_batched_tensor(o1)
                tensor_o2 = _to_batched_tensor(o2, device=tensor_o1.device)
                self.update((tensor_o1, tensor_o2))
        else:
            self.update(output)

    def completed(self, engine: Engine, name: str) -> None:
        """Helper method to compute metric's value and put into the engine. It is automatically attached to the
        `engine` with :meth:`~ignite.metrics.metric.Metric.attach`. If metrics' value is torch tensor, it is
        explicitly sent to CPU device.

        Args:
            engine: the engine to which the metric must be attached
            name: the name of the metric used as key in dict `engine.state.metrics`

        .. versionchanged:: 0.4.3
            Added dict in metrics results.

        .. versionchanged:: 0.4.5
            metric's value is put on CPU if torch tensor.

        """
        result = self.compute()
        if isinstance(result, Mapping):
            if name in result.keys():
                raise ValueError(f"Argument name '{name}' is conflicting with mapping keys: {list(result.keys())}")

            for key, value in result.items():
                engine.state.metrics[key] = value
            engine.state.metrics[name] = result
        else:
            if isinstance(result, torch.Tensor):
                if len(result.size()) == 0:
                    result = result.item()
                elif "cpu" not in result.device.type:
                    result = result.cpu()

            engine.state.metrics[name] = result

    def _check_usage(self, usage: Union[str, MetricUsage]) -> MetricUsage:
        if isinstance(usage, str):
            usages = [EpochWise, RunningEpochWise, BatchWise, RunningBatchWise, SingleEpochRunningBatchWise]
            for usage_cls in usages:
                if usage == usage_cls.usage_name:
                    usage = usage_cls()
                    break
            if not isinstance(usage, MetricUsage):
                raise ValueError(
                    "Argument usage should be '(Running)EpochWise.usage_name' or "
                    f"'((SingleEpoch)Running)BatchWise.usage_name', got {usage}"
                )
        if not isinstance(usage, MetricUsage):
            raise TypeError(f"Unhandled usage type {type(usage)}")
        return usage

    def attach(self, engine: Engine, name: str, usage: Union[str, MetricUsage] = EpochWise()) -> None:
        """
        Attaches current metric to provided engine. On the end of engine's run, `engine.state.metrics` dictionary will
        contain computed metric's value under provided name.

        Args:
            engine: the engine to which the metric must be attached
            name: the name of the metric to attach
            usage: the usage of the metric. Valid string values should be
                :attr:`ignite.metrics.metric.EpochWise.usage_name` (default) or
                :attr:`ignite.metrics.metric.BatchWise.usage_name`.

        Examples:

            .. code-block:: python

                metric = ...
                metric.attach(engine, "mymetric")

                assert "mymetric" in engine.run(data).metrics

                assert metric.is_attached(engine)

            Example with usage:

            .. code-block:: python

                metric = ...
                metric.attach(engine, "mymetric", usage=BatchWise.usage_name)

                assert "mymetric" in engine.run(data).metrics

                assert metric.is_attached(engine, usage=BatchWise.usage_name)
        """
        usage = self._check_usage(usage)
        if not engine.has_event_handler(self.started, usage.STARTED):
            engine.add_event_handler(usage.STARTED, self.started)
        if not engine.has_event_handler(self.iteration_completed, usage.ITERATION_COMPLETED):
            engine.add_event_handler(usage.ITERATION_COMPLETED, self.iteration_completed)
        engine.add_event_handler(usage.COMPLETED, self.completed, name)

    def detach(self, engine: Engine, usage: Union[str, MetricUsage] = EpochWise()) -> None:
        """
        Detaches current metric from the engine and no metric's computation is done during the run.
        This method in conjunction with :meth:`~ignite.metrics.metric.Metric.attach` can be useful if several
        metrics need to be computed with different periods. For example, one metric is computed every training epoch
        and another metric (e.g. more expensive one) is done every n-th training epoch.

        Args:
            engine: the engine from which the metric must be detached
            usage: the usage of the metric. Valid string values should be
                'epoch_wise' (default) or 'batch_wise'.

        Examples:
            .. code-block:: python

                metric = ...
                engine = ...
                metric.detach(engine)

                assert "mymetric" not in engine.run(data).metrics

                assert not metric.is_attached(engine)

            Example with usage:

            .. code-block:: python

                metric = ...
                engine = ...
                metric.detach(engine, usage="batch_wise")

                assert "mymetric" not in engine.run(data).metrics

                assert not metric.is_attached(engine, usage="batch_wise")
        """
        usage = self._check_usage(usage)
        if engine.has_event_handler(self.completed, usage.COMPLETED):
            engine.remove_event_handler(self.completed, usage.COMPLETED)
        if engine.has_event_handler(self.started, usage.STARTED):
            engine.remove_event_handler(self.started, usage.STARTED)
        if engine.has_event_handler(self.iteration_completed, usage.ITERATION_COMPLETED):
            engine.remove_event_handler(self.iteration_completed, usage.ITERATION_COMPLETED)

    def is_attached(self, engine: Engine, usage: Union[str, MetricUsage] = EpochWise()) -> bool:
        """
        Checks if current metric is attached to provided engine. If attached, metric's computed
        value is written to `engine.state.metrics` dictionary.

        Args:
            engine: the engine checked from which the metric should be attached
            usage: the usage of the metric. Valid string values should be
                'epoch_wise' (default) or 'batch_wise'.
        """
        usage = self._check_usage(usage)
        return engine.has_event_handler(self.completed, usage.COMPLETED)

    def _state_dict_per_rank(self) -> OrderedDict:
        def func(
            x: Union[torch.Tensor, Metric, None, float], **kwargs: Any
        ) -> Union[torch.Tensor, float, OrderedDict, None]:
            if isinstance(x, Metric):
                return x._state_dict_per_rank()
            if x is None or isinstance(x, (int, float, torch.Tensor)):
                return x
            else:
                raise TypeError(
                    "Found attribute of unsupported type. Currently, supported types include"
                    " numeric types, tensor, Metric or sequence/mapping of metrics."
                )

        state: OrderedDict[str, Union[torch.Tensor, List, Dict, None]] = OrderedDict()
        for attr_name in self._state_dict_all_req_keys:
            if attr_name not in self.__dict__:
                raise ValueError(
                    f"Found a value in _state_dict_all_req_keys that is not among metric attributes: {attr_name}"
                )
            attr = getattr(self, attr_name)
            state[attr_name] = _tree_map(func, attr)  # type: ignore[assignment]

        return state

    __state_dict_key_per_rank: str = "__metric_state_per_rank"

    def state_dict(self) -> OrderedDict:
        """Method returns state dict with attributes of the metric specified in its
        `_state_dict_all_req_keys` attribute. Can be used to save internal state of the class.
        """
        state = self._state_dict_per_rank()

        if idist.get_world_size() > 1:
            return OrderedDict([(Metric.__state_dict_key_per_rank, idist.all_gather(state))])
        return OrderedDict([(Metric.__state_dict_key_per_rank, [state])])

    def _load_state_dict_per_rank(self, state_dict: Mapping) -> None:
        super().load_state_dict(state_dict)

        def func(x: Any, y: Any) -> None:
            if isinstance(x, Metric):
                x._load_state_dict_per_rank(y)
            elif isinstance(x, _CollectionItem):
                value = x.value()
                if y is None or isinstance(y, _CollectionItem.types_as_collection_item):
                    x.load_value(y)
                elif isinstance(value, Metric):
                    value._load_state_dict_per_rank(y)
                else:
                    raise ValueError(f"Unsupported type for provided state_dict data: {type(y)}")

        for attr_name in self._state_dict_all_req_keys:
            attr = getattr(self, attr_name)
            attr = _CollectionItem.wrap(self.__dict__, attr_name, attr)
            _tree_apply2(func, attr, state_dict[attr_name])

    def load_state_dict(self, state_dict: Mapping) -> None:
        """Method replaces internal state of the class with provided state dict data.

        If there's an active distributed configuration, the process uses its rank to pick the proper value from
        the list of values saved under each attribute's name in the dict.

        Args:
            state_dict: a dict containing attributes of the metric specified in its `_state_dict_all_req_keys`
                attribute.
        """
        if not isinstance(state_dict, Mapping):
            raise TypeError(f"Argument state_dict should be a dictionary, but given {type(state_dict)}")

        if not (len(state_dict) == 1 and Metric.__state_dict_key_per_rank in state_dict):
            raise ValueError(
                "Incorrect state_dict object. Argument state_dict should be a dictionary "
                "provided by Metric.state_dict(). "
                f"Expected single key: {Metric.__state_dict_key_per_rank}, but given {state_dict.keys()}"
            )

        list_state_dicts_per_rank = state_dict[Metric.__state_dict_key_per_rank]
        rank = idist.get_rank()
        world_size = idist.get_world_size()
        if len(list_state_dicts_per_rank) != world_size:
            raise ValueError(
                "Incorrect state_dict object. Argument state_dict should be a dictionary "
                "provided by Metric.state_dict(). "
                f"Expected a list of state_dicts of size equal world_size: {world_size}, "
                f"but got {len(list_state_dicts_per_rank)}"
            )

        state_dict = list_state_dicts_per_rank[rank]
        self._load_state_dict_per_rank(state_dict)

    def __add__(self, other: Any) -> "MetricsLambda":
        from ignite.metrics.metrics_lambda import MetricsLambda

        return MetricsLambda(lambda x, y: x + y, self, other)

    def __radd__(self, other: Any) -> "MetricsLambda":
        from ignite.metrics.metrics_lambda import MetricsLambda

        return MetricsLambda(lambda x, y: x + y, other, self)

    def __sub__(self, other: Any) -> "MetricsLambda":
        from ignite.metrics.metrics_lambda import MetricsLambda

        return MetricsLambda(lambda x, y: x - y, self, other)

    def __rsub__(self, other: Any) -> "MetricsLambda":
        from ignite.metrics.metrics_lambda import MetricsLambda

        return MetricsLambda(lambda x, y: x - y, other, self)

    def __mul__(self, other: Any) -> "MetricsLambda":
        from ignite.metrics.metrics_lambda import MetricsLambda

        return MetricsLambda(lambda x, y: x * y, self, other)

    def __rmul__(self, other: Any) -> "MetricsLambda":
        from ignite.metrics.metrics_lambda import MetricsLambda

        return MetricsLambda(lambda x, y: x * y, other, self)

    def __pow__(self, other: Any) -> "MetricsLambda":
        from ignite.metrics.metrics_lambda import MetricsLambda

        return MetricsLambda(lambda x, y: x**y, self, other)

    def __rpow__(self, other: Any) -> "MetricsLambda":
        from ignite.metrics.metrics_lambda import MetricsLambda

        return MetricsLambda(lambda x, y: x**y, other, self)

    def __mod__(self, other: Any) -> "MetricsLambda":
        from ignite.metrics.metrics_lambda import MetricsLambda

        return MetricsLambda(lambda x, y: x % y, self, other)

    def __truediv__(self, other: Any) -> "MetricsLambda":
        from ignite.metrics.metrics_lambda import MetricsLambda

        return MetricsLambda(lambda x, y: x.__truediv__(y), self, other)

    def __rtruediv__(self, other: Any) -> "MetricsLambda":
        from ignite.metrics.metrics_lambda import MetricsLambda

        return MetricsLambda(lambda x, y: x.__truediv__(y), other, self)

    def __floordiv__(self, other: Any) -> "MetricsLambda":
        from ignite.metrics.metrics_lambda import MetricsLambda

        return MetricsLambda(lambda x, y: x // y, self, other)

    def __getattr__(self, attr: str) -> Callable:
        from ignite.metrics.metrics_lambda import MetricsLambda

        if attr.startswith("__") and attr.endswith("__"):
            return object.__getattribute__(self, attr)

        def fn(x: Metric, *args: Any, **kwargs: Any) -> Any:
            return getattr(x, attr)(*args, **kwargs)

        def wrapper(*args: Any, **kwargs: Any) -> "MetricsLambda":
            return MetricsLambda(fn, self, *args, **kwargs)

        return wrapper

    def __getitem__(self, index: Any) -> "MetricsLambda":
        from ignite.metrics.metrics_lambda import MetricsLambda

        return MetricsLambda(lambda x: x[index], self)

    def __getstate__(self) -> Dict:
        return self.__dict__

    def __setstate__(self, d: Dict) -> None:
        self.__dict__.update(d)


def sync_all_reduce(*attrs: Any) -> Callable:
    """Helper decorator for distributed configuration to collect instance attribute value
    across all participating processes and apply the specified reduction operation.

    See :doc:`metrics` on how to use it.

    Args:
        attrs: attribute names of decorated class

    .. versionchanged:: 0.4.5
        - Ability to handle different reduction operations (SUM, MAX, MIN, PRODUCT).
    """

    def wrapper(func: Callable) -> Callable:
        @wraps(func)
        def another_wrapper(self: Metric, *args: Any, **kwargs: Any) -> Callable:
            if not isinstance(self, Metric):
                raise RuntimeError(
                    "Decorator sync_all_reduce should be used on ignite.metric.Metric class methods only"
                )
            ws = idist.get_world_size()
            unreduced_attrs = {}
            if len(attrs) > 0 and ws > 1:
                for attr in attrs:
                    op_kwargs = {}
                    if ":" in attr:
                        attr, op = attr.split(":")
                        valid_ops = ["MIN", "MAX", "SUM", "PRODUCT"]
                        if op not in valid_ops:
                            raise ValueError(f"Reduction operation is not valid (expected : {valid_ops}, got: {op}")
                        op_kwargs["op"] = op
                    if attr not in self.__dict__:
                        raise ValueError(f"Metric {type(self)} has no attribute named `{attr}`.")
                    t = getattr(self, attr)
                    if not isinstance(t, (Number, torch.Tensor)):
                        raise TypeError(
                            "Attribute provided to sync_all_reduce should be a "
                            f"number or tensor but `{attr}` has type {type(t)}"
                        )
                    unreduced_attrs[attr] = t
                    # Here `clone` is necessary since `idist.all_reduce` modifies `t` inplace in the case
                    # `t` is a tensor and its `device` is same as that of the process.
                    # TODO: Remove this dual behavior of `all_reduce` to always either return a new tensor or
                    #       modify it in-place.
                    t_reduced = idist.all_reduce(cast(float, t) if isinstance(t, Number) else t.clone(), **op_kwargs)
                    setattr(self, attr, t_reduced)

            result = func(self, *args, **kwargs)

            for attr, value in unreduced_attrs.items():
                setattr(self, attr, value)
            return result

        return another_wrapper

    setattr(wrapper, "_decorated", True)
    return wrapper


def reinit__is_reduced(func: Callable) -> Callable:
    """Helper decorator for distributed configuration.

    See :doc:`metrics` on how to use it.

    Args:
        func: A callable to reinit.
    """

    @wraps(func)
    def wrapper(self: Metric, *args: Any, **kwargs: Any) -> None:
        func(self, *args, **kwargs)
        if "_result" in self.__dict__:
            self._result = None  # type: ignore[attr-defined]

    setattr(wrapper, "_decorated", True)
    return wrapper


def _is_list_of_tensors_or_numbers(x: Sequence[Union[torch.Tensor, float]]) -> bool:
    return isinstance(x, Sequence) and all([isinstance(t, (torch.Tensor, Number)) for t in x])


def _to_batched_tensor(x: Union[torch.Tensor, float], device: Optional[torch.device] = None) -> torch.Tensor:
    if isinstance(x, torch.Tensor):
        return x.unsqueeze(dim=0)
    return torch.tensor([x], device=device)