1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
import warnings
from typing import Callable, Optional, Sequence, Union
import torch
import torch.nn.functional as F
from ignite.exceptions import NotComputableError
from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce
__all__ = ["SSIM"]
class SSIM(Metric):
"""
Computes Structural Similarity Index Measure
- ``update`` must receive output of the form ``(y_pred, y)``. They have to be of the same type.
Valid :class:`torch.dtype` are the following:
- on CPU: `torch.float32`, `torch.float64`.
- on CUDA: `torch.float16`, `torch.bfloat16`, `torch.float32`, `torch.float64`.
Args:
data_range: Range of the image. Typically, ``1.0`` or ``255``.
kernel_size: Size of the kernel. Default: (11, 11)
sigma: Standard deviation of the gaussian kernel.
Argument is used if ``gaussian=True``. Default: (1.5, 1.5)
k1: Parameter of SSIM. Default: 0.01
k2: Parameter of SSIM. Default: 0.03
gaussian: ``True`` to use gaussian kernel, ``False`` to use uniform kernel
output_transform: A callable that is used to transform the
:class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the
form expected by the metric.
device: specifies which device updates are accumulated on. Setting the metric's
device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By
default, CPU.
skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be
true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)``
Alternatively, ``output_transform`` can be used to handle this.
Examples:
To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine.
The output of the engine's ``process_function`` needs to be in the format of
``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. If not, ``output_tranform`` can be added
to the metric to transform the output into the form expected by the metric.
``y_pred`` and ``y`` can be un-normalized or normalized image tensors. Depending on that, the user might need
to adjust ``data_range``. ``y_pred`` and ``y`` should have the same shape.
For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`.
.. include:: defaults.rst
:start-after: :orphan:
.. testcode::
metric = SSIM(data_range=1.0)
metric.attach(default_evaluator, 'ssim')
preds = torch.rand([4, 3, 16, 16])
target = preds * 0.75
state = default_evaluator.run([[preds, target]])
print(state.metrics['ssim'])
.. testoutput::
0.9218971...
.. versionadded:: 0.4.2
.. versionchanged:: 0.5.1
``skip_unrolling`` argument is added.
"""
_state_dict_all_req_keys = ("_sum_of_ssim", "_num_examples", "_kernel")
def __init__(
self,
data_range: Union[int, float],
kernel_size: Union[int, Sequence[int]] = (11, 11),
sigma: Union[float, Sequence[float]] = (1.5, 1.5),
k1: float = 0.01,
k2: float = 0.03,
gaussian: bool = True,
output_transform: Callable = lambda x: x,
device: Union[str, torch.device] = torch.device("cpu"),
skip_unrolling: bool = False,
):
if isinstance(kernel_size, int):
self.kernel_size: Sequence[int] = [kernel_size, kernel_size]
elif isinstance(kernel_size, Sequence):
self.kernel_size = kernel_size
else:
raise ValueError("Argument kernel_size should be either int or a sequence of int.")
if isinstance(sigma, float):
self.sigma: Sequence[float] = [sigma, sigma]
elif isinstance(sigma, Sequence):
self.sigma = sigma
else:
raise ValueError("Argument sigma should be either float or a sequence of float.")
if any(x % 2 == 0 or x <= 0 for x in self.kernel_size):
raise ValueError(f"Expected kernel_size to have odd positive number. Got {kernel_size}.")
if any(y <= 0 for y in self.sigma):
raise ValueError(f"Expected sigma to have positive number. Got {sigma}.")
super(SSIM, self).__init__(output_transform=output_transform, device=device, skip_unrolling=skip_unrolling)
self.gaussian = gaussian
self.data_range = data_range
self.c1 = (k1 * data_range) ** 2
self.c2 = (k2 * data_range) ** 2
self.pad_h = (self.kernel_size[0] - 1) // 2
self.pad_w = (self.kernel_size[1] - 1) // 2
self._kernel_2d = self._gaussian_or_uniform_kernel(kernel_size=self.kernel_size, sigma=self.sigma)
self._kernel: Optional[torch.Tensor] = None
@reinit__is_reduced
def reset(self) -> None:
self._sum_of_ssim = torch.tensor(0.0, dtype=torch.float64, device=self._device)
self._num_examples = 0
def _uniform(self, kernel_size: int) -> torch.Tensor:
kernel = torch.zeros(kernel_size)
start_uniform_index = max(kernel_size // 2 - 2, 0)
end_uniform_index = min(kernel_size // 2 + 3, kernel_size)
min_, max_ = -2.5, 2.5
kernel[start_uniform_index:end_uniform_index] = 1 / (max_ - min_)
return kernel.unsqueeze(dim=0) # (1, kernel_size)
def _gaussian(self, kernel_size: int, sigma: float) -> torch.Tensor:
ksize_half = (kernel_size - 1) * 0.5
kernel = torch.linspace(-ksize_half, ksize_half, steps=kernel_size, device=self._device)
gauss = torch.exp(-0.5 * (kernel / sigma).pow(2))
return (gauss / gauss.sum()).unsqueeze(dim=0) # (1, kernel_size)
def _gaussian_or_uniform_kernel(self, kernel_size: Sequence[int], sigma: Sequence[float]) -> torch.Tensor:
if self.gaussian:
kernel_x = self._gaussian(kernel_size[0], sigma[0])
kernel_y = self._gaussian(kernel_size[1], sigma[1])
else:
kernel_x = self._uniform(kernel_size[0])
kernel_y = self._uniform(kernel_size[1])
return torch.matmul(kernel_x.t(), kernel_y) # (kernel_size, 1) * (1, kernel_size)
@reinit__is_reduced
def update(self, output: Sequence[torch.Tensor]) -> None:
y_pred, y = output[0].detach(), output[1].detach()
if y_pred.dtype != y.dtype:
raise TypeError(
f"Expected y_pred and y to have the same data type. Got y_pred: {y_pred.dtype} and y: {y.dtype}."
)
if y_pred.shape != y.shape:
raise ValueError(
f"Expected y_pred and y to have the same shape. Got y_pred: {y_pred.shape} and y: {y.shape}."
)
if len(y_pred.shape) != 4 or len(y.shape) != 4:
raise ValueError(
f"Expected y_pred and y to have BxCxHxW shape. Got y_pred: {y_pred.shape} and y: {y.shape}."
)
# converts potential integer tensor to fp
if not y.is_floating_point():
y = y.float()
if not y_pred.is_floating_point():
y_pred = y_pred.float()
nb_channel = y_pred.size(1)
if self._kernel is None or self._kernel.shape[0] != nb_channel:
self._kernel = self._kernel_2d.expand(nb_channel, 1, -1, -1)
if y_pred.device != self._kernel.device:
if self._kernel.device == torch.device("cpu"):
self._kernel = self._kernel.to(device=y_pred.device)
elif y_pred.device == torch.device("cpu"):
warnings.warn(
"y_pred tensor is on cpu device but previous computation was on another device: "
f"{self._kernel.device}. To avoid having a performance hit, please ensure that all "
"y and y_pred tensors are on the same device.",
)
y_pred = y_pred.to(device=self._kernel.device)
y = y.to(device=self._kernel.device)
y_pred = F.pad(y_pred, [self.pad_w, self.pad_w, self.pad_h, self.pad_h], mode="reflect")
y = F.pad(y, [self.pad_w, self.pad_w, self.pad_h, self.pad_h], mode="reflect")
if y_pred.dtype != self._kernel.dtype:
self._kernel = self._kernel.to(dtype=y_pred.dtype)
input_list = [y_pred, y, y_pred * y_pred, y * y, y_pred * y]
outputs = F.conv2d(torch.cat(input_list), self._kernel, groups=nb_channel)
batch_size = y_pred.size(0)
output_list = [outputs[x * batch_size : (x + 1) * batch_size] for x in range(len(input_list))]
mu_pred_sq = output_list[0].pow(2)
mu_target_sq = output_list[1].pow(2)
mu_pred_target = output_list[0] * output_list[1]
sigma_pred_sq = output_list[2] - mu_pred_sq
sigma_target_sq = output_list[3] - mu_target_sq
sigma_pred_target = output_list[4] - mu_pred_target
a1 = 2 * mu_pred_target + self.c1
a2 = 2 * sigma_pred_target + self.c2
b1 = mu_pred_sq + mu_target_sq + self.c1
b2 = sigma_pred_sq + sigma_target_sq + self.c2
ssim_idx = (a1 * a2) / (b1 * b2)
self._sum_of_ssim += torch.mean(ssim_idx, (1, 2, 3), dtype=torch.float64).sum().to(device=self._device)
self._num_examples += y.shape[0]
@sync_all_reduce("_sum_of_ssim", "_num_examples")
def compute(self) -> float:
if self._num_examples == 0:
raise NotComputableError("SSIM must have at least one example before it can be computed.")
return (self._sum_of_ssim / self._num_examples).item()
|