File: ssim.py

package info (click to toggle)
pytorch-ignite 0.5.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,712 kB
  • sloc: python: 46,874; sh: 376; makefile: 27
file content (224 lines) | stat: -rw-r--r-- 9,764 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import warnings
from typing import Callable, Optional, Sequence, Union

import torch
import torch.nn.functional as F

from ignite.exceptions import NotComputableError
from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce

__all__ = ["SSIM"]


class SSIM(Metric):
    """
    Computes Structural Similarity Index Measure

    - ``update`` must receive output of the form ``(y_pred, y)``. They have to be of the same type.
        Valid :class:`torch.dtype` are the following:
        - on CPU: `torch.float32`, `torch.float64`.
        - on CUDA: `torch.float16`, `torch.bfloat16`, `torch.float32`, `torch.float64`.

    Args:
        data_range: Range of the image. Typically, ``1.0`` or ``255``.
        kernel_size: Size of the kernel. Default: (11, 11)
        sigma: Standard deviation of the gaussian kernel.
            Argument is used if ``gaussian=True``. Default: (1.5, 1.5)
        k1: Parameter of SSIM. Default: 0.01
        k2: Parameter of SSIM. Default: 0.03
        gaussian: ``True`` to use gaussian kernel, ``False`` to use uniform kernel
        output_transform: A callable that is used to transform the
            :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the
            form expected by the metric.
        device: specifies which device updates are accumulated on. Setting the metric's
            device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By
            default, CPU.
        skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be
            true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)``
            Alternatively, ``output_transform`` can be used to handle this.

    Examples:
        To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine.
        The output of the engine's ``process_function`` needs to be in the format of
        ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. If not, ``output_tranform`` can be added
        to the metric to transform the output into the form expected by the metric.

        ``y_pred`` and ``y`` can be un-normalized or normalized image tensors. Depending on that, the user might need
        to adjust ``data_range``. ``y_pred`` and ``y`` should have the same shape.

        For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`.

        .. include:: defaults.rst
            :start-after: :orphan:

        .. testcode::

            metric = SSIM(data_range=1.0)
            metric.attach(default_evaluator, 'ssim')
            preds = torch.rand([4, 3, 16, 16])
            target = preds * 0.75
            state = default_evaluator.run([[preds, target]])
            print(state.metrics['ssim'])

        .. testoutput::

            0.9218971...

    .. versionadded:: 0.4.2

    .. versionchanged:: 0.5.1
        ``skip_unrolling`` argument is added.
    """

    _state_dict_all_req_keys = ("_sum_of_ssim", "_num_examples", "_kernel")

    def __init__(
        self,
        data_range: Union[int, float],
        kernel_size: Union[int, Sequence[int]] = (11, 11),
        sigma: Union[float, Sequence[float]] = (1.5, 1.5),
        k1: float = 0.01,
        k2: float = 0.03,
        gaussian: bool = True,
        output_transform: Callable = lambda x: x,
        device: Union[str, torch.device] = torch.device("cpu"),
        skip_unrolling: bool = False,
    ):
        if isinstance(kernel_size, int):
            self.kernel_size: Sequence[int] = [kernel_size, kernel_size]
        elif isinstance(kernel_size, Sequence):
            self.kernel_size = kernel_size
        else:
            raise ValueError("Argument kernel_size should be either int or a sequence of int.")

        if isinstance(sigma, float):
            self.sigma: Sequence[float] = [sigma, sigma]
        elif isinstance(sigma, Sequence):
            self.sigma = sigma
        else:
            raise ValueError("Argument sigma should be either float or a sequence of float.")

        if any(x % 2 == 0 or x <= 0 for x in self.kernel_size):
            raise ValueError(f"Expected kernel_size to have odd positive number. Got {kernel_size}.")

        if any(y <= 0 for y in self.sigma):
            raise ValueError(f"Expected sigma to have positive number. Got {sigma}.")

        super(SSIM, self).__init__(output_transform=output_transform, device=device, skip_unrolling=skip_unrolling)
        self.gaussian = gaussian
        self.data_range = data_range
        self.c1 = (k1 * data_range) ** 2
        self.c2 = (k2 * data_range) ** 2
        self.pad_h = (self.kernel_size[0] - 1) // 2
        self.pad_w = (self.kernel_size[1] - 1) // 2
        self._kernel_2d = self._gaussian_or_uniform_kernel(kernel_size=self.kernel_size, sigma=self.sigma)
        self._kernel: Optional[torch.Tensor] = None

    @reinit__is_reduced
    def reset(self) -> None:
        self._sum_of_ssim = torch.tensor(0.0, dtype=torch.float64, device=self._device)
        self._num_examples = 0

    def _uniform(self, kernel_size: int) -> torch.Tensor:
        kernel = torch.zeros(kernel_size)

        start_uniform_index = max(kernel_size // 2 - 2, 0)
        end_uniform_index = min(kernel_size // 2 + 3, kernel_size)

        min_, max_ = -2.5, 2.5
        kernel[start_uniform_index:end_uniform_index] = 1 / (max_ - min_)

        return kernel.unsqueeze(dim=0)  # (1, kernel_size)

    def _gaussian(self, kernel_size: int, sigma: float) -> torch.Tensor:
        ksize_half = (kernel_size - 1) * 0.5
        kernel = torch.linspace(-ksize_half, ksize_half, steps=kernel_size, device=self._device)
        gauss = torch.exp(-0.5 * (kernel / sigma).pow(2))
        return (gauss / gauss.sum()).unsqueeze(dim=0)  # (1, kernel_size)

    def _gaussian_or_uniform_kernel(self, kernel_size: Sequence[int], sigma: Sequence[float]) -> torch.Tensor:
        if self.gaussian:
            kernel_x = self._gaussian(kernel_size[0], sigma[0])
            kernel_y = self._gaussian(kernel_size[1], sigma[1])
        else:
            kernel_x = self._uniform(kernel_size[0])
            kernel_y = self._uniform(kernel_size[1])

        return torch.matmul(kernel_x.t(), kernel_y)  # (kernel_size, 1) * (1, kernel_size)

    @reinit__is_reduced
    def update(self, output: Sequence[torch.Tensor]) -> None:
        y_pred, y = output[0].detach(), output[1].detach()

        if y_pred.dtype != y.dtype:
            raise TypeError(
                f"Expected y_pred and y to have the same data type. Got y_pred: {y_pred.dtype} and y: {y.dtype}."
            )

        if y_pred.shape != y.shape:
            raise ValueError(
                f"Expected y_pred and y to have the same shape. Got y_pred: {y_pred.shape} and y: {y.shape}."
            )

        if len(y_pred.shape) != 4 or len(y.shape) != 4:
            raise ValueError(
                f"Expected y_pred and y to have BxCxHxW shape. Got y_pred: {y_pred.shape} and y: {y.shape}."
            )

        # converts potential integer tensor to fp
        if not y.is_floating_point():
            y = y.float()
        if not y_pred.is_floating_point():
            y_pred = y_pred.float()

        nb_channel = y_pred.size(1)
        if self._kernel is None or self._kernel.shape[0] != nb_channel:
            self._kernel = self._kernel_2d.expand(nb_channel, 1, -1, -1)

        if y_pred.device != self._kernel.device:
            if self._kernel.device == torch.device("cpu"):
                self._kernel = self._kernel.to(device=y_pred.device)

            elif y_pred.device == torch.device("cpu"):
                warnings.warn(
                    "y_pred tensor is on cpu device but previous computation was on another device: "
                    f"{self._kernel.device}. To avoid having a performance hit, please ensure that all "
                    "y and y_pred tensors are on the same device.",
                )
                y_pred = y_pred.to(device=self._kernel.device)
                y = y.to(device=self._kernel.device)

        y_pred = F.pad(y_pred, [self.pad_w, self.pad_w, self.pad_h, self.pad_h], mode="reflect")
        y = F.pad(y, [self.pad_w, self.pad_w, self.pad_h, self.pad_h], mode="reflect")

        if y_pred.dtype != self._kernel.dtype:
            self._kernel = self._kernel.to(dtype=y_pred.dtype)

        input_list = [y_pred, y, y_pred * y_pred, y * y, y_pred * y]
        outputs = F.conv2d(torch.cat(input_list), self._kernel, groups=nb_channel)
        batch_size = y_pred.size(0)
        output_list = [outputs[x * batch_size : (x + 1) * batch_size] for x in range(len(input_list))]

        mu_pred_sq = output_list[0].pow(2)
        mu_target_sq = output_list[1].pow(2)
        mu_pred_target = output_list[0] * output_list[1]

        sigma_pred_sq = output_list[2] - mu_pred_sq
        sigma_target_sq = output_list[3] - mu_target_sq
        sigma_pred_target = output_list[4] - mu_pred_target

        a1 = 2 * mu_pred_target + self.c1
        a2 = 2 * sigma_pred_target + self.c2
        b1 = mu_pred_sq + mu_target_sq + self.c1
        b2 = sigma_pred_sq + sigma_target_sq + self.c2

        ssim_idx = (a1 * a2) / (b1 * b2)
        self._sum_of_ssim += torch.mean(ssim_idx, (1, 2, 3), dtype=torch.float64).sum().to(device=self._device)

        self._num_examples += y.shape[0]

    @sync_all_reduce("_sum_of_ssim", "_num_examples")
    def compute(self) -> float:
        if self._num_examples == 0:
            raise NotComputableError("SSIM must have at least one example before it can be computed.")
        return (self._sum_of_ssim / self._num_examples).item()