File: gather.py

package info (click to toggle)
pytorch-scatter 2.1.2-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,128 kB
  • sloc: python: 1,574; cpp: 1,379; sh: 58; makefile: 13
file content (136 lines) | stat: -rw-r--r-- 4,364 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import time
import itertools

import argparse
import torch
from scipy.io import loadmat

from torch_scatter import gather_coo, gather_csr

from scatter_segment import short_rows, long_rows, download, bold


@torch.no_grad()
def correctness(dataset):
    group, name = dataset
    mat = loadmat(f'{name}.mat')['Problem'][0][0][2].tocsr()
    rowptr = torch.from_numpy(mat.indptr).to(args.device, torch.long)
    row = torch.from_numpy(mat.tocoo().row).to(args.device, torch.long)
    dim_size = rowptr.size(0) - 1

    for size in sizes[1:]:
        try:
            x = torch.randn((dim_size, size), device=args.device)
            x = x.squeeze(-1) if size == 1 else x

            out1 = x.index_select(0, row)
            out2 = gather_coo(x, row)
            out3 = gather_csr(x, rowptr)

            assert torch.allclose(out1, out2, atol=1e-4)
            assert torch.allclose(out1, out3, atol=1e-4)
        except RuntimeError as e:
            if 'out of memory' not in str(e):
                raise RuntimeError(e)
            torch.cuda.empty_cache()


def time_func(func, x):
    try:
        if torch.cuda.is_available():
            torch.cuda.synchronize()
        t = time.perf_counter()

        if not args.with_backward:
            with torch.no_grad():
                for _ in range(iters):
                    func(x)
        else:
            x = x.requires_grad_()
            for _ in range(iters):
                out = func(x)
                torch.autograd.grad(out, x, out, only_inputs=True)

        if torch.cuda.is_available():
            torch.cuda.synchronize()
        return time.perf_counter() - t
    except RuntimeError as e:
        if 'out of memory' not in str(e):
            raise RuntimeError(e)
        torch.cuda.empty_cache()
        return float('inf')


def timing(dataset):
    group, name = dataset
    mat = loadmat(f'{name}.mat')['Problem'][0][0][2].tocsr()
    rowptr = torch.from_numpy(mat.indptr).to(args.device, torch.long)
    row = torch.from_numpy(mat.tocoo().row).to(args.device, torch.long)
    dim_size = rowptr.size(0) - 1
    avg_row_len = row.size(0) / dim_size

    def select(x):
        return x.index_select(0, row)

    def gather(x):
        return x.gather(0, row.view(-1, 1).expand(-1, x.size(1)))

    def gat_coo(x):
        return gather_coo(x, row)

    def gat_csr(x):
        return gather_csr(x, rowptr)

    t1, t2, t3, t4 = [], [], [], []
    for size in sizes:
        try:
            x = torch.randn((dim_size, size), device=args.device)

            t1 += [time_func(select, x)]
            t2 += [time_func(gather, x)]
            t3 += [time_func(gat_coo, x)]
            t4 += [time_func(gat_csr, x)]

            del x

        except RuntimeError as e:
            if 'out of memory' not in str(e):
                raise RuntimeError(e)
            torch.cuda.empty_cache()
            for t in (t1, t2, t3, t4):
                t.append(float('inf'))

    ts = torch.tensor([t1, t2, t3, t4])
    winner = torch.zeros_like(ts, dtype=torch.bool)
    winner[ts.argmin(dim=0), torch.arange(len(sizes))] = 1
    winner = winner.tolist()

    name = f'{group}/{name}'
    print(f'{bold(name)} (avg row length: {avg_row_len:.2f}):')
    print('\t'.join(['       '] + [f'{size:>5}' for size in sizes]))
    print('\t'.join([bold('SELECT ')] +
                    [bold(f'{t:.5f}', f) for t, f in zip(t1, winner[0])]))
    print('\t'.join([bold('GAT    ')] +
                    [bold(f'{t:.5f}', f) for t, f in zip(t2, winner[1])]))
    print('\t'.join([bold('GAT_COO')] +
                    [bold(f'{t:.5f}', f) for t, f in zip(t3, winner[2])]))
    print('\t'.join([bold('GAT_CSR')] +
                    [bold(f'{t:.5f}', f) for t, f in zip(t4, winner[3])]))
    print()


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--with_backward', action='store_true')
    parser.add_argument('--device', type=str, default='cuda')
    args = parser.parse_args()
    iters = 1 if args.device == 'cpu' else 20
    sizes = [1, 16, 32, 64, 128, 256, 512]
    sizes = sizes[:3] if args.device == 'cpu' else sizes

    for _ in range(10):  # Warmup.
        torch.randn(100, 100, device=args.device).sum()
    for dataset in itertools.chain(short_rows, long_rows):
        download(dataset)
        correctness(dataset)
        timing(dataset)