1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
import time
import itertools
import argparse
import torch
from scipy.io import loadmat
from torch_scatter import gather_coo, gather_csr
from scatter_segment import short_rows, long_rows, download, bold
@torch.no_grad()
def correctness(dataset):
group, name = dataset
mat = loadmat(f'{name}.mat')['Problem'][0][0][2].tocsr()
rowptr = torch.from_numpy(mat.indptr).to(args.device, torch.long)
row = torch.from_numpy(mat.tocoo().row).to(args.device, torch.long)
dim_size = rowptr.size(0) - 1
for size in sizes[1:]:
try:
x = torch.randn((dim_size, size), device=args.device)
x = x.squeeze(-1) if size == 1 else x
out1 = x.index_select(0, row)
out2 = gather_coo(x, row)
out3 = gather_csr(x, rowptr)
assert torch.allclose(out1, out2, atol=1e-4)
assert torch.allclose(out1, out3, atol=1e-4)
except RuntimeError as e:
if 'out of memory' not in str(e):
raise RuntimeError(e)
torch.cuda.empty_cache()
def time_func(func, x):
try:
if torch.cuda.is_available():
torch.cuda.synchronize()
t = time.perf_counter()
if not args.with_backward:
with torch.no_grad():
for _ in range(iters):
func(x)
else:
x = x.requires_grad_()
for _ in range(iters):
out = func(x)
torch.autograd.grad(out, x, out, only_inputs=True)
if torch.cuda.is_available():
torch.cuda.synchronize()
return time.perf_counter() - t
except RuntimeError as e:
if 'out of memory' not in str(e):
raise RuntimeError(e)
torch.cuda.empty_cache()
return float('inf')
def timing(dataset):
group, name = dataset
mat = loadmat(f'{name}.mat')['Problem'][0][0][2].tocsr()
rowptr = torch.from_numpy(mat.indptr).to(args.device, torch.long)
row = torch.from_numpy(mat.tocoo().row).to(args.device, torch.long)
dim_size = rowptr.size(0) - 1
avg_row_len = row.size(0) / dim_size
def select(x):
return x.index_select(0, row)
def gather(x):
return x.gather(0, row.view(-1, 1).expand(-1, x.size(1)))
def gat_coo(x):
return gather_coo(x, row)
def gat_csr(x):
return gather_csr(x, rowptr)
t1, t2, t3, t4 = [], [], [], []
for size in sizes:
try:
x = torch.randn((dim_size, size), device=args.device)
t1 += [time_func(select, x)]
t2 += [time_func(gather, x)]
t3 += [time_func(gat_coo, x)]
t4 += [time_func(gat_csr, x)]
del x
except RuntimeError as e:
if 'out of memory' not in str(e):
raise RuntimeError(e)
torch.cuda.empty_cache()
for t in (t1, t2, t3, t4):
t.append(float('inf'))
ts = torch.tensor([t1, t2, t3, t4])
winner = torch.zeros_like(ts, dtype=torch.bool)
winner[ts.argmin(dim=0), torch.arange(len(sizes))] = 1
winner = winner.tolist()
name = f'{group}/{name}'
print(f'{bold(name)} (avg row length: {avg_row_len:.2f}):')
print('\t'.join([' '] + [f'{size:>5}' for size in sizes]))
print('\t'.join([bold('SELECT ')] +
[bold(f'{t:.5f}', f) for t, f in zip(t1, winner[0])]))
print('\t'.join([bold('GAT ')] +
[bold(f'{t:.5f}', f) for t, f in zip(t2, winner[1])]))
print('\t'.join([bold('GAT_COO')] +
[bold(f'{t:.5f}', f) for t, f in zip(t3, winner[2])]))
print('\t'.join([bold('GAT_CSR')] +
[bold(f'{t:.5f}', f) for t, f in zip(t4, winner[3])]))
print()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--with_backward', action='store_true')
parser.add_argument('--device', type=str, default='cuda')
args = parser.parse_args()
iters = 1 if args.device == 'cpu' else 20
sizes = [1, 16, 32, 64, 128, 256, 512]
sizes = sizes[:3] if args.device == 'cpu' else sizes
for _ in range(10): # Warmup.
torch.randn(100, 100, device=args.device).sum()
for dataset in itertools.chain(short_rows, long_rows):
download(dataset)
correctness(dataset)
timing(dataset)
|