1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
import time
import os.path as osp
import itertools
import argparse
import wget
import torch
from scipy.io import loadmat
from torch_scatter import scatter, segment_coo, segment_csr
short_rows = [
('DIMACS10', 'citationCiteseer'),
('SNAP', 'web-Stanford'),
]
long_rows = [
('Janna', 'StocF-1465'),
('GHS_psdef', 'ldoor'),
]
def download(dataset):
url = 'https://sparse.tamu.edu/mat/{}/{}.mat'
for group, name in itertools.chain(long_rows, short_rows):
if not osp.exists(f'{name}.mat'):
print(f'Downloading {group}/{name}:')
wget.download(url.format(group, name))
print('')
def bold(text, flag=True):
return f'\033[1m{text}\033[0m' if flag else text
@torch.no_grad()
def correctness(dataset):
group, name = dataset
mat = loadmat(f'{name}.mat')['Problem'][0][0][2].tocsr()
rowptr = torch.from_numpy(mat.indptr).to(args.device, torch.long)
row = torch.from_numpy(mat.tocoo().row).to(args.device, torch.long)
dim_size = rowptr.size(0) - 1
for size in sizes:
try:
x = torch.randn((row.size(0), size), device=args.device)
x = x.squeeze(-1) if size == 1 else x
out1 = scatter(x, row, dim=0, dim_size=dim_size, reduce='add')
out2 = segment_coo(x, row, dim_size=dim_size, reduce='add')
out3 = segment_csr(x, rowptr, reduce='add')
assert torch.allclose(out1, out2, atol=1e-4)
assert torch.allclose(out1, out3, atol=1e-4)
out1 = scatter(x, row, dim=0, dim_size=dim_size, reduce='mean')
out2 = segment_coo(x, row, dim_size=dim_size, reduce='mean')
out3 = segment_csr(x, rowptr, reduce='mean')
assert torch.allclose(out1, out2, atol=1e-4)
assert torch.allclose(out1, out3, atol=1e-4)
out1 = scatter(x, row, dim=0, dim_size=dim_size, reduce='min')
out2 = segment_coo(x, row, reduce='min')
out3 = segment_csr(x, rowptr, reduce='min')
assert torch.allclose(out1, out2, atol=1e-4)
assert torch.allclose(out1, out3, atol=1e-4)
out1 = scatter(x, row, dim=0, dim_size=dim_size, reduce='max')
out2 = segment_coo(x, row, reduce='max')
out3 = segment_csr(x, rowptr, reduce='max')
assert torch.allclose(out1, out2, atol=1e-4)
assert torch.allclose(out1, out3, atol=1e-4)
except RuntimeError as e:
if 'out of memory' not in str(e):
raise RuntimeError(e)
torch.cuda.empty_cache()
def time_func(func, x):
try:
if torch.cuda.is_available():
torch.cuda.synchronize()
t = time.perf_counter()
if not args.with_backward:
with torch.no_grad():
for _ in range(iters):
func(x)
else:
x = x.requires_grad_()
for _ in range(iters):
out = func(x)
out = out[0] if isinstance(out, tuple) else out
torch.autograd.grad(out, x, out, only_inputs=True)
if torch.cuda.is_available():
torch.cuda.synchronize()
return time.perf_counter() - t
except RuntimeError as e:
if 'out of memory' not in str(e):
raise RuntimeError(e)
torch.cuda.empty_cache()
return float('inf')
def timing(dataset):
group, name = dataset
mat = loadmat(f'{name}.mat')['Problem'][0][0][2].tocsr()
rowptr = torch.from_numpy(mat.indptr).to(args.device, torch.long)
row = torch.from_numpy(mat.tocoo().row).to(args.device, torch.long)
row2 = row[torch.randperm(row.size(0))]
dim_size = rowptr.size(0) - 1
avg_row_len = row.size(0) / dim_size
def sca1_row(x):
out = x.new_zeros(dim_size, *x.size()[1:])
row_tmp = row.view(-1, 1).expand_as(x) if x.dim() > 1 else row
return out.scatter_add_(0, row_tmp, x)
def sca1_col(x):
out = x.new_zeros(dim_size, *x.size()[1:])
row2_tmp = row2.view(-1, 1).expand_as(x) if x.dim() > 1 else row2
return out.scatter_add_(0, row2_tmp, x)
def sca2_row(x):
return scatter(x, row, dim=0, dim_size=dim_size, reduce=args.reduce)
def sca2_col(x):
return scatter(x, row2, dim=0, dim_size=dim_size, reduce=args.reduce)
def seg_coo(x):
return segment_coo(x, row, reduce=args.reduce)
def seg_csr(x):
return segment_csr(x, rowptr, reduce=args.reduce)
def dense1(x):
return getattr(torch, args.reduce)(x, dim=-2)
def dense2(x):
return getattr(torch, args.reduce)(x, dim=-1)
t1, t2, t3, t4, t5, t6, t7, t8 = [], [], [], [], [], [], [], []
for size in sizes:
try:
x = torch.randn((row.size(0), size), device=args.device)
x = x.squeeze(-1) if size == 1 else x
t1 += [time_func(sca1_row, x)]
t2 += [time_func(sca1_col, x)]
t3 += [time_func(sca2_row, x)]
t4 += [time_func(sca2_col, x)]
t5 += [time_func(seg_coo, x)]
t6 += [time_func(seg_csr, x)]
del x
except RuntimeError as e:
if 'out of memory' not in str(e):
raise RuntimeError(e)
torch.cuda.empty_cache()
for t in (t1, t2, t3, t4, t5, t6):
t.append(float('inf'))
try:
x = torch.randn((dim_size, int(avg_row_len + 1), size),
device=args.device)
t7 += [time_func(dense1, x)]
x = x.view(dim_size, size, int(avg_row_len + 1))
t8 += [time_func(dense2, x)]
del x
except RuntimeError as e:
if 'out of memory' not in str(e):
raise RuntimeError(e)
torch.cuda.empty_cache()
for t in (t7, t8):
t.append(float('inf'))
ts = torch.tensor([t1, t2, t3, t4, t5, t6, t7, t8])
winner = torch.zeros_like(ts, dtype=torch.bool)
winner[ts.argmin(dim=0), torch.arange(len(sizes))] = 1
winner = winner.tolist()
name = f'{group}/{name}'
print(f'{bold(name)} (avg row length: {avg_row_len:.2f}):')
print('\t'.join([' '] + [f'{size:>5}' for size in sizes]))
print('\t'.join([bold('SCA1_ROW')] +
[bold(f'{t:.5f}', f) for t, f in zip(t1, winner[0])]))
print('\t'.join([bold('SCA1_COL')] +
[bold(f'{t:.5f}', f) for t, f in zip(t2, winner[1])]))
print('\t'.join([bold('SCA2_ROW')] +
[bold(f'{t:.5f}', f) for t, f in zip(t3, winner[2])]))
print('\t'.join([bold('SCA2_COL')] +
[bold(f'{t:.5f}', f) for t, f in zip(t4, winner[3])]))
print('\t'.join([bold('SEG_COO ')] +
[bold(f'{t:.5f}', f) for t, f in zip(t5, winner[4])]))
print('\t'.join([bold('SEG_CSR ')] +
[bold(f'{t:.5f}', f) for t, f in zip(t6, winner[5])]))
print('\t'.join([bold('DENSE1 ')] +
[bold(f'{t:.5f}', f) for t, f in zip(t7, winner[6])]))
print('\t'.join([bold('DENSE2 ')] +
[bold(f'{t:.5f}', f) for t, f in zip(t8, winner[7])]))
print()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--reduce', type=str, required=True,
choices=['sum', 'mean', 'min', 'max'])
parser.add_argument('--with_backward', action='store_true')
parser.add_argument('--device', type=str, default='cuda')
args = parser.parse_args()
iters = 1 if args.device == 'cpu' else 20
sizes = [1, 16, 32, 64, 128, 256, 512]
sizes = sizes[:3] if args.device == 'cpu' else sizes
for _ in range(10): # Warmup.
torch.randn(100, 100, device=args.device).sum()
for dataset in itertools.chain(short_rows, long_rows):
download(dataset)
correctness(dataset)
timing(dataset)
|