File: reducer.cuh

package info (click to toggle)
pytorch-scatter 2.1.2-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,128 kB
  • sloc: python: 1,574; cpp: 1,379; sh: 58; makefile: 13
file content (114 lines) | stat: -rw-r--r-- 4,918 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#pragma once

#include <limits>
#include <map>

#include "atomics.cuh"

enum ReductionType { SUM, MEAN, MUL, DIV, MIN, MAX };

const std::map<std::string, ReductionType> reduce2REDUCE = {
    {"sum", SUM}, {"mean", MEAN}, {"mul", MUL},
    {"div", DIV}, {"min", MIN},   {"max", MAX},
};

#define AT_DISPATCH_REDUCTION_TYPES(reduce, ...)                               \
  [&] {                                                                        \
    switch (reduce2REDUCE.at(reduce)) {                                        \
    case SUM: {                                                                \
      static constexpr ReductionType REDUCE = SUM;                                        \
      return __VA_ARGS__();                                                    \
    }                                                                          \
    case MEAN: {                                                               \
      static constexpr ReductionType REDUCE = MEAN;                                       \
      return __VA_ARGS__();                                                    \
    }                                                                          \
    case MUL: {                                                                \
      static constexpr ReductionType REDUCE = MUL;                                        \
      return __VA_ARGS__();                                                    \
    }                                                                          \
    case DIV: {                                                                \
      static constexpr ReductionType REDUCE = DIV;                                        \
      return __VA_ARGS__();                                                    \
    }                                                                          \
    case MIN: {                                                                \
      static constexpr ReductionType REDUCE = MIN;                                        \
      return __VA_ARGS__();                                                    \
    }                                                                          \
    case MAX: {                                                                \
      static constexpr ReductionType REDUCE = MAX;                                        \
      return __VA_ARGS__();                                                    \
    }                                                                          \
    }                                                                          \
  }()

template <typename scalar_t, ReductionType REDUCE> struct Reducer {
  static inline __host__ __device__ scalar_t init() {
    if (REDUCE == MUL || REDUCE == DIV)
      return (scalar_t)1;
    else if (REDUCE == MIN)
      return std::numeric_limits<scalar_t>::max();
    else if (REDUCE == MAX)
      return std::numeric_limits<scalar_t>::lowest();
    else
      return (scalar_t)0;
  }

  static inline __host__ __device__ void update(scalar_t *val,
                                                scalar_t new_val) {
    if (REDUCE == SUM || REDUCE == MEAN)
      *val = *val + new_val;
    else if (REDUCE == MUL)
      *val = *val * new_val;
    else if (REDUCE == DIV)
      *val = *val / new_val;
    else if ((REDUCE == MIN && new_val < *val) ||
             (REDUCE == MAX && new_val > *val)) {
      *val = new_val;
    }
  }

  static inline __host__ __device__ void update(scalar_t *val, scalar_t new_val,
                                                int64_t *arg, int64_t new_arg) {
    if (REDUCE == SUM || REDUCE == MEAN)
      *val = *val + new_val;
    else if (REDUCE == MUL)
      *val = *val * new_val;
    else if (REDUCE == DIV)
      *val = *val / new_val;
    else if ((REDUCE == MIN && new_val < *val) ||
             (REDUCE == MAX && new_val > *val)) {
      *val = new_val;
      *arg = new_arg;
    }
  }

  static inline __host__ __device__ void write(scalar_t *address, scalar_t val,
                                               int64_t *arg_address,
                                               int64_t arg, int count) {
    if (REDUCE == SUM || REDUCE == MUL || REDUCE == DIV)
      *address = val;
    else if (REDUCE == MEAN)
      *address = val / (scalar_t)(count > 0 ? count : 1);
    else if (REDUCE == MIN || REDUCE == MAX) {
      if (count > 0) {
        *address = val;
        *arg_address = arg;
      } else
        *address = (scalar_t)0;
    }
  }

  static inline __device__ void atomic_write(scalar_t *address, scalar_t val) {
    if (REDUCE == SUM || REDUCE == MEAN)
      atomAdd(address, val);
    else if (REDUCE == MUL)
      atomMul(address, val);
    else if (REDUCE == DIV)
      atomDiv(address, val);
    else if (REDUCE == MIN)
      atomMin(address, val);
    else if (REDUCE == MAX)
      atomMax(address, val);
  }
};