1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
#include "scatter_cuda.h"
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/detail/IndexUtils.cuh>
#include <ATen/cuda/detail/TensorInfo.cuh>
#include "reducer.cuh"
#include "utils.cuh"
#define THREADS 256
#define BLOCKS(N) (N + THREADS - 1) / THREADS
template <typename scalar_t, ReductionType REDUCE>
__global__ void
scatter_kernel(const scalar_t *src_data,
const at::cuda::detail::TensorInfo<int64_t, int> index_info,
scalar_t *out_data, int E, int K, int N, int numel) {
int thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
int b = thread_idx / (E * K);
int k = thread_idx % K;
if (thread_idx < numel) {
int offset = at::cuda::detail::IndexToOffset<int64_t, int, -1>::get(
thread_idx, index_info);
int64_t idx = index_info.data[offset];
Reducer<scalar_t, REDUCE>::atomic_write(out_data + b * N * K + idx * K + k,
src_data[thread_idx]);
}
}
template <typename scalar_t>
__global__ void
scatter_arg_kernel(const scalar_t *src_data,
const at::cuda::detail::TensorInfo<int64_t, int> index_info,
const scalar_t *out_data, int64_t *arg_out_data, int E,
int K, int N, int numel) {
int thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
int b = thread_idx / (E * K);
int e = (thread_idx / K) % E;
int k = thread_idx % K;
if (thread_idx < numel) {
int offset = at::cuda::detail::IndexToOffset<int64_t, int, -1>::get(
thread_idx, index_info);
int64_t idx = index_info.data[offset];
if (src_data[thread_idx] == out_data[b * N * K + idx * K + k]) {
arg_out_data[b * N * K + idx * K + k] = e;
}
}
}
std::tuple<torch::Tensor, torch::optional<torch::Tensor>>
scatter_cuda(torch::Tensor src, torch::Tensor index, int64_t dim,
torch::optional<torch::Tensor> optional_out,
torch::optional<int64_t> dim_size, std::string reduce) {
CHECK_CUDA(src);
CHECK_CUDA(index);
if (optional_out.has_value())
CHECK_CUDA(optional_out.value());
cudaSetDevice(src.get_device());
CHECK_INPUT(src.dim() == index.dim());
for (auto i = 0; i < index.dim() - 1; i++)
CHECK_INPUT(src.size(i) >= index.size(i));
src = src.contiguous();
torch::Tensor out;
if (optional_out.has_value()) {
out = optional_out.value().contiguous();
for (auto i = 0; i < out.dim(); i++)
if (i != dim)
CHECK_INPUT(src.size(i) == out.size(i));
} else {
auto sizes = src.sizes().vec();
if (dim_size.has_value())
sizes[dim] = dim_size.value();
else if (index.numel() == 0)
sizes[dim] = 0;
else {
sizes[dim] = 1 + index.max().cpu().data_ptr<int64_t>()[0];
}
out = torch::empty(sizes, src.options());
}
torch::optional<torch::Tensor> arg_out = torch::nullopt;
int64_t *arg_out_data = nullptr;
if (reduce2REDUCE.at(reduce) == MIN || reduce2REDUCE.at(reduce) == MAX) {
arg_out = torch::full_like(out, src.size(dim), index.options());
arg_out_data = arg_out.value().data_ptr<int64_t>();
}
if (src.numel() == 0) {
if (!optional_out.has_value())
out.fill_(0);
return std::make_tuple(out, arg_out);
}
auto B = 1;
for (auto i = 0; i < dim; i++)
B *= src.size(i);
auto E = src.size(dim);
auto K = src.numel() / (B * E);
auto N = out.size(dim);
auto index_info = at::cuda::detail::getTensorInfo<int64_t, int>(index);
auto stream = at::cuda::getCurrentCUDAStream();
AT_DISPATCH_ALL_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, src.scalar_type(), "_", [&] {
auto src_data = src.data_ptr<scalar_t>();
auto out_data = out.data_ptr<scalar_t>();
AT_DISPATCH_REDUCTION_TYPES(reduce, [&] {
if (!optional_out.has_value())
out.fill_(Reducer<scalar_t, REDUCE>::init());
scatter_kernel<scalar_t, REDUCE>
<<<BLOCKS(src.numel()), THREADS, 0, stream>>>(
src_data, index_info, out_data, E, K, N, src.numel());
if (!optional_out.has_value() && (REDUCE == MIN || REDUCE == MAX))
out.masked_fill_(out == Reducer<scalar_t, REDUCE>::init(), (scalar_t)0);
if (REDUCE == MIN || REDUCE == MAX)
scatter_arg_kernel<scalar_t>
<<<BLOCKS(src.numel()), THREADS, 0, stream>>>(
src_data, index_info, out_data, arg_out_data, E, K, N,
src.numel());
});
});
return std::make_tuple(out, arg_out);
}
|