1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
#include "segment_csr_cuda.h"
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/detail/IndexUtils.cuh>
#include <ATen/cuda/detail/TensorInfo.cuh>
#include "index_info.cuh"
#include "reducer.cuh"
#include "utils.cuh"
#define THREADS 256
#define BLOCKS(TB, N) (TB * N + THREADS - 1) / THREADS
#define FULL_MASK 0xffffffff
template <typename scalar_t, ReductionType REDUCE, int TB>
__global__ void
segment_csr_kernel(const scalar_t *src_data,
const at::cuda::detail::TensorInfo<int64_t, int> indptr_info,
scalar_t *out_data, int64_t *arg_out_data, size_t N,
size_t E) {
// Each warp processes exactly `32/TB` rows and aggregates all row values
// via a parallel reduction.
int thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
int row_idx = thread_idx / TB;
int lane_idx = thread_idx & (TB - 1);
if (row_idx < N) {
int offset = IndexPtrToOffset<int64_t>::get(row_idx, indptr_info);
int64_t row_start = __ldg(indptr_info.data + offset);
int64_t row_end = __ldg(indptr_info.data + offset +
indptr_info.strides[indptr_info.dims - 1]);
scalar_t val = Reducer<scalar_t, REDUCE>::init();
int64_t arg, arg_tmp;
offset = (row_idx / (indptr_info.sizes[indptr_info.dims - 1] - 1)) * E;
for (int64_t src_idx = row_start + lane_idx; src_idx < row_end;
src_idx += TB) {
Reducer<scalar_t, REDUCE>::update(&val, src_data[offset + src_idx], &arg,
src_idx);
}
#pragma unroll
for (int i = TB / 2; i > 0; i /= 2) {
// Parallel reduction inside a single warp.
if (REDUCE == MIN || REDUCE == MAX)
arg_tmp = SHFL_DOWN_SYNC(FULL_MASK, arg, i);
Reducer<scalar_t, REDUCE>::update(
&val, SHFL_DOWN_SYNC(FULL_MASK, val, i), &arg, arg_tmp);
}
if (lane_idx == 0) {
Reducer<scalar_t, REDUCE>::write(out_data + row_idx, val,
arg_out_data + row_idx, arg,
row_end - row_start);
}
}
}
template <typename scalar_t, ReductionType REDUCE>
__global__ void segment_csr_broadcast_kernel(
const scalar_t *src_data,
const at::cuda::detail::TensorInfo<int64_t, int> indptr_info,
scalar_t *out_data, int64_t *arg_out_data, size_t N, size_t K, size_t E) {
// Each thread processes exactly one row. It turned out that is more
// efficient than using shared memory due to avoiding synchronization
// barriers.
int thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
int row_idx = thread_idx / K;
int lane_idx = thread_idx % K;
if (thread_idx < N * K) {
int offset = IndexPtrToOffset<int64_t>::get(row_idx, indptr_info);
int64_t row_start = __ldg(indptr_info.data + offset);
int64_t row_end = __ldg(indptr_info.data + offset +
indptr_info.strides[indptr_info.dims - 1]);
scalar_t val = Reducer<scalar_t, REDUCE>::init();
int64_t arg;
offset = (row_idx / (indptr_info.sizes[indptr_info.dims - 1] - 1)) * E * K;
for (int64_t src_idx = row_start; src_idx < row_end; src_idx++) {
Reducer<scalar_t, REDUCE>::update(
&val, src_data[offset + K * src_idx + lane_idx], &arg, src_idx);
}
Reducer<scalar_t, REDUCE>::write(out_data + thread_idx, val,
arg_out_data + thread_idx, arg,
row_end - row_start);
}
}
std::tuple<torch::Tensor, torch::optional<torch::Tensor>>
segment_csr_cuda(torch::Tensor src, torch::Tensor indptr,
torch::optional<torch::Tensor> optional_out,
std::string reduce) {
CHECK_CUDA(src);
CHECK_CUDA(indptr);
if (optional_out.has_value())
CHECK_CUDA(optional_out.value());
cudaSetDevice(src.get_device());
CHECK_INPUT(src.dim() >= indptr.dim());
auto sizes = indptr.sizes().vec();
for (auto i = 0; i < indptr.dim() - 1; i++)
sizes[i] = src.size(i);
indptr = indptr.expand(sizes);
auto dim = indptr.dim() - 1;
src = src.contiguous();
torch::Tensor out;
if (optional_out.has_value()) {
out = optional_out.value().contiguous();
for (int i = 0; i < out.dim(); i++)
if (i != dim)
CHECK_INPUT(src.size(i) == out.size(i));
CHECK_INPUT(src.numel() == 0 || out.size(dim) == indptr.size(dim) - 1);
} else {
sizes = src.sizes().vec();
sizes[dim] = std::max<int64_t>(indptr.size(dim) - 1, 0);
out = torch::empty(sizes, src.options());
}
torch::optional<torch::Tensor> arg_out = torch::nullopt;
int64_t *arg_out_data = nullptr;
if (reduce2REDUCE.at(reduce) == MIN || reduce2REDUCE.at(reduce) == MAX) {
arg_out = torch::full(out.sizes(), src.size(dim), indptr.options());
arg_out_data = arg_out.value().data_ptr<int64_t>();
}
if (src.numel() == 0) {
if (!optional_out.has_value())
out.fill_(0);
return std::make_tuple(out, arg_out);
}
auto N = out.size(dim) * (indptr.numel() / indptr.size(-1));
auto K = out.numel() / N;
auto E = src.size(dim);
auto indptr_info = at::cuda::detail::getTensorInfo<int64_t, int>(indptr);
auto stream = at::cuda::getCurrentCUDAStream();
AT_DISPATCH_ALL_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, src.scalar_type(), "_", [&] {
auto src_data = src.data_ptr<scalar_t>();
auto out_data = out.data_ptr<scalar_t>();
AT_DISPATCH_REDUCTION_TYPES(reduce, [&] {
if (K == 1) {
segment_csr_kernel<scalar_t, REDUCE, 1>
<<<BLOCKS(32, N), THREADS, 0, stream>>>(
src_data, indptr_info, out_data, arg_out_data, N, E);
} else {
segment_csr_broadcast_kernel<scalar_t, REDUCE>
<<<BLOCKS(1, N * K), THREADS, 0, stream>>>(
src_data, indptr_info, out_data, arg_out_data, N, K, E);
}
});
});
return std::make_tuple(out, arg_out);
}
template <typename scalar_t, int TB>
__global__ void
gather_csr_kernel(const scalar_t *src_data,
const at::cuda::detail::TensorInfo<int64_t, int> indptr_info,
scalar_t *out_data, size_t N, size_t E) {
int thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
int row_idx = thread_idx / TB;
int lane_idx = thread_idx % TB;
if (row_idx < N) {
int offset = IndexPtrToOffset<int64_t>::get(row_idx, indptr_info);
int row_start = __ldg(indptr_info.data + offset);
int row_end = __ldg(indptr_info.data + offset +
indptr_info.strides[indptr_info.dims - 1]);
scalar_t val = __ldg(src_data + row_idx);
offset = (row_idx / (indptr_info.sizes[indptr_info.dims - 1] - 1)) * E;
for (int out_idx = row_start + lane_idx; out_idx < row_end; out_idx += TB) {
out_data[offset + out_idx] = val; // "Mostly" coalesced.
}
}
}
template <typename scalar_t>
__global__ void gather_csr_broadcast_kernel(
const scalar_t *src_data,
const at::cuda::detail::TensorInfo<int64_t, int> indptr_info,
scalar_t *out_data, size_t N, size_t K, size_t E) {
int thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
int row_idx = thread_idx / K;
int lane_idx = thread_idx % K;
if (thread_idx < N * K) {
int offset = IndexPtrToOffset<int64_t>::get(row_idx, indptr_info);
int row_start = __ldg(indptr_info.data + offset);
int row_end = __ldg(indptr_info.data + offset +
indptr_info.strides[indptr_info.dims - 1]);
scalar_t val = src_data[thread_idx]; // Coalesced.
offset = (row_idx / (indptr_info.sizes[indptr_info.dims - 1] - 1)) * E * K;
for (int out_idx = row_start; out_idx < row_end; out_idx++) {
out_data[offset + K * out_idx + lane_idx] = val; // "Mostly" coalesced.
}
}
}
torch::Tensor gather_csr_cuda(torch::Tensor src, torch::Tensor indptr,
torch::optional<torch::Tensor> optional_out) {
CHECK_CUDA(src);
CHECK_CUDA(indptr);
if (optional_out.has_value())
CHECK_CUDA(optional_out.value());
cudaSetDevice(src.get_device());
CHECK_INPUT(src.dim() >= indptr.dim());
auto sizes = indptr.sizes().vec();
for (auto i = 0; i < indptr.dim() - 1; i++)
sizes[i] = src.size(i);
indptr = indptr.expand(sizes);
auto dim = indptr.dim() - 1;
CHECK_INPUT(src.size(dim) == 0 || src.size(dim) == indptr.size(dim) - 1);
src = src.contiguous();
torch::Tensor out;
if (optional_out.has_value()) {
out = optional_out.value().contiguous();
for (auto i = 0; i < out.dim(); i++)
if (i != dim)
CHECK_INPUT(src.size(i) == out.size(i));
} else {
auto sizes = src.sizes().vec();
if (src.numel() > 0) {
sizes[dim] = indptr.flatten()[-1].cpu().data_ptr<int64_t>()[0];
} else {
sizes[dim] = 0;
}
out = torch::empty(sizes, src.options());
}
if (src.numel() == 0) {
if (!optional_out.has_value())
out.fill_(0);
return out;
}
auto N = src.size(dim) * (indptr.numel() / indptr.size(-1));
auto K = src.numel() / N;
auto E = out.size(dim);
auto indptr_info = at::cuda::detail::getTensorInfo<int64_t, int>(indptr);
auto stream = at::cuda::getCurrentCUDAStream();
AT_DISPATCH_ALL_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, src.scalar_type(), "_", [&] {
auto src_data = src.data_ptr<scalar_t>();
auto out_data = out.data_ptr<scalar_t>();
if (K == 1)
gather_csr_kernel<scalar_t, 4><<<BLOCKS(1, 4 * N), THREADS, 0, stream>>>(
src_data, indptr_info, out_data, N, E);
else
gather_csr_broadcast_kernel<scalar_t>
<<<BLOCKS(1, N * K), THREADS, 0, stream>>>(src_data, indptr_info,
out_data, N, K, E);
});
return out;
}
|