1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
#ifdef WITH_PYTHON
#include <Python.h>
#endif
#include <torch/script.h>
#include "cpu/scatter_cpu.h"
#include "macros.h"
#include "utils.h"
#ifdef WITH_CUDA
#include "cuda/scatter_cuda.h"
#endif
#ifdef _WIN32
#ifdef WITH_PYTHON
#ifdef WITH_CUDA
PyMODINIT_FUNC PyInit__scatter_cuda(void) { return NULL; }
#else
PyMODINIT_FUNC PyInit__scatter_cpu(void) { return NULL; }
#endif
#endif
#endif
torch::Tensor broadcast(torch::Tensor src, torch::Tensor other, int64_t dim) {
if (src.dim() == 1)
for (auto i = 0; i < dim; i++)
src = src.unsqueeze(0);
for (auto i = src.dim(); i < other.dim(); i++)
src = src.unsqueeze(-1);
src = src.expand(other.sizes().vec());
return src;
}
std::tuple<torch::Tensor, torch::optional<torch::Tensor>>
scatter_fw(torch::Tensor src, torch::Tensor index, int64_t dim,
torch::optional<torch::Tensor> optional_out,
torch::optional<int64_t> dim_size, std::string reduce) {
if (src.device().is_cuda()) {
#ifdef WITH_CUDA
return scatter_cuda(src, index, dim, optional_out, dim_size, reduce);
#else
AT_ERROR("Not compiled with CUDA support");
#endif
} else {
return scatter_cpu(src, index, dim, optional_out, dim_size, reduce);
}
}
using torch::autograd::AutogradContext;
using torch::autograd::Variable;
using torch::autograd::variable_list;
class ScatterSum : public torch::autograd::Function<ScatterSum> {
public:
static variable_list forward(AutogradContext *ctx, Variable src,
Variable index, int64_t dim,
torch::optional<Variable> optional_out,
torch::optional<int64_t> dim_size) {
dim = dim < 0 ? src.dim() + dim : dim;
ctx->saved_data["dim"] = dim;
ctx->saved_data["src_shape"] = src.sizes();
index = broadcast(index, src, dim);
auto result = scatter_fw(src, index, dim, optional_out, dim_size, "sum");
auto out = std::get<0>(result);
ctx->save_for_backward({index});
if (optional_out.has_value())
ctx->mark_dirty({optional_out.value()});
return {out};
}
static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
auto grad_out = grad_outs[0];
auto saved = ctx->get_saved_variables();
auto index = saved[0];
auto dim = ctx->saved_data["dim"].toInt();
auto src_shape = list2vec(ctx->saved_data["src_shape"].toIntList());
auto grad_in = torch::gather(grad_out, dim, index, false);
return {grad_in, Variable(), Variable(), Variable(), Variable()};
}
};
class ScatterMul : public torch::autograd::Function<ScatterMul> {
public:
static variable_list forward(AutogradContext *ctx, Variable src,
Variable index, int64_t dim,
torch::optional<Variable> optional_out,
torch::optional<int64_t> dim_size) {
dim = dim < 0 ? src.dim() + dim : dim;
ctx->saved_data["dim"] = dim;
ctx->saved_data["src_shape"] = src.sizes();
index = broadcast(index, src, dim);
auto result = scatter_fw(src, index, dim, optional_out, dim_size, "mul");
auto out = std::get<0>(result);
ctx->save_for_backward({src, index, out});
if (optional_out.has_value())
ctx->mark_dirty({optional_out.value()});
return {out};
}
static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
auto grad_out = grad_outs[0];
auto saved = ctx->get_saved_variables();
auto src = saved[0];
auto index = saved[1];
auto out = saved[2];
auto dim = ctx->saved_data["dim"].toInt();
auto src_shape = list2vec(ctx->saved_data["src_shape"].toIntList());
auto grad_in = torch::gather(grad_out * out, dim, index, false).div_(src);
grad_in.masked_fill_(grad_in.isnan(), 0);
return {grad_in, Variable(), Variable(), Variable(), Variable()};
}
};
class ScatterMean : public torch::autograd::Function<ScatterMean> {
public:
static variable_list forward(AutogradContext *ctx, Variable src,
Variable index, int64_t dim,
torch::optional<Variable> optional_out,
torch::optional<int64_t> dim_size) {
dim = dim < 0 ? src.dim() + dim : dim;
ctx->saved_data["dim"] = dim;
ctx->saved_data["src_shape"] = src.sizes();
auto old_index = index;
index = broadcast(index, src, dim);
auto result = scatter_fw(src, index, dim, optional_out, dim_size, "sum");
auto out = std::get<0>(result);
auto ones = torch::ones(old_index.sizes(), src.options());
result = scatter_fw(ones, old_index,
old_index.dim() <= dim ? old_index.dim() - 1 : dim,
torch::nullopt, out.size(dim), "sum");
auto count = std::get<0>(result);
count.masked_fill_(count < 1, 1);
count = broadcast(count, out, dim);
if (out.is_floating_point())
out.true_divide_(count);
else
out.div_(count, "floor");
ctx->save_for_backward({index, count});
if (optional_out.has_value())
ctx->mark_dirty({optional_out.value()});
return {out};
}
static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
auto grad_out = grad_outs[0];
auto saved = ctx->get_saved_variables();
auto index = saved[0];
auto count = saved[1];
auto dim = ctx->saved_data["dim"].toInt();
auto src_shape = list2vec(ctx->saved_data["src_shape"].toIntList());
count = torch::gather(count, dim, index, false);
auto grad_in = torch::gather(grad_out, dim, index, false);
grad_in.true_divide_(count);
return {grad_in, Variable(), Variable(), Variable(), Variable()};
}
};
class ScatterMin : public torch::autograd::Function<ScatterMin> {
public:
static variable_list forward(AutogradContext *ctx, Variable src,
Variable index, int64_t dim,
torch::optional<Variable> optional_out,
torch::optional<int64_t> dim_size) {
dim = dim < 0 ? src.dim() + dim : dim;
ctx->saved_data["dim"] = dim;
ctx->saved_data["src_shape"] = src.sizes();
index = broadcast(index, src, dim);
auto result = scatter_fw(src, index, dim, optional_out, dim_size, "min");
auto out = std::get<0>(result);
auto arg_out = std::get<1>(result).value();
ctx->save_for_backward({index, arg_out});
ctx->mark_non_differentiable({arg_out});
if (optional_out.has_value())
ctx->mark_dirty({optional_out.value()});
return {out, arg_out};
}
static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
auto grad_out = grad_outs[0];
auto saved = ctx->get_saved_variables();
auto index = saved[0];
auto arg_out = saved[1];
auto dim = ctx->saved_data["dim"].toInt();
auto src_shape = list2vec(ctx->saved_data["src_shape"].toIntList());
src_shape[dim] += 1;
auto grad_in = torch::zeros(src_shape, grad_out.options());
grad_in.scatter_(dim, arg_out, grad_out);
grad_in = grad_in.narrow(dim, 0, src_shape[dim] - 1);
return {grad_in, Variable(), Variable(), Variable(), Variable()};
}
};
class ScatterMax : public torch::autograd::Function<ScatterMax> {
public:
static variable_list forward(AutogradContext *ctx, Variable src,
Variable index, int64_t dim,
torch::optional<Variable> optional_out,
torch::optional<int64_t> dim_size) {
dim = dim < 0 ? src.dim() + dim : dim;
ctx->saved_data["dim"] = dim;
ctx->saved_data["src_shape"] = src.sizes();
index = broadcast(index, src, dim);
auto result = scatter_fw(src, index, dim, optional_out, dim_size, "max");
auto out = std::get<0>(result);
auto arg_out = std::get<1>(result).value();
ctx->save_for_backward({index, arg_out});
ctx->mark_non_differentiable({arg_out});
if (optional_out.has_value())
ctx->mark_dirty({optional_out.value()});
return {out, arg_out};
}
static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
auto grad_out = grad_outs[0];
auto saved = ctx->get_saved_variables();
auto index = saved[0];
auto arg_out = saved[1];
auto dim = ctx->saved_data["dim"].toInt();
auto src_shape = list2vec(ctx->saved_data["src_shape"].toIntList());
src_shape[dim] += 1;
auto grad_in = torch::zeros(src_shape, grad_out.options());
grad_in.scatter_(dim, arg_out, grad_out);
grad_in = grad_in.narrow(dim, 0, src_shape[dim] - 1);
return {grad_in, Variable(), Variable(), Variable(), Variable()};
}
};
SCATTER_API torch::Tensor
scatter_sum(torch::Tensor src, torch::Tensor index, int64_t dim,
torch::optional<torch::Tensor> optional_out,
torch::optional<int64_t> dim_size) {
return ScatterSum::apply(src, index, dim, optional_out, dim_size)[0];
}
SCATTER_API torch::Tensor
scatter_mul(torch::Tensor src, torch::Tensor index, int64_t dim,
torch::optional<torch::Tensor> optional_out,
torch::optional<int64_t> dim_size) {
return ScatterMul::apply(src, index, dim, optional_out, dim_size)[0];
}
SCATTER_API torch::Tensor
scatter_mean(torch::Tensor src, torch::Tensor index, int64_t dim,
torch::optional<torch::Tensor> optional_out,
torch::optional<int64_t> dim_size) {
return ScatterMean::apply(src, index, dim, optional_out, dim_size)[0];
}
SCATTER_API std::tuple<torch::Tensor, torch::Tensor>
scatter_min(torch::Tensor src, torch::Tensor index, int64_t dim,
torch::optional<torch::Tensor> optional_out,
torch::optional<int64_t> dim_size) {
auto result = ScatterMin::apply(src, index, dim, optional_out, dim_size);
return std::make_tuple(result[0], result[1]);
}
SCATTER_API std::tuple<torch::Tensor, torch::Tensor>
scatter_max(torch::Tensor src, torch::Tensor index, int64_t dim,
torch::optional<torch::Tensor> optional_out,
torch::optional<int64_t> dim_size) {
auto result = ScatterMax::apply(src, index, dim, optional_out, dim_size);
return std::make_tuple(result[0], result[1]);
}
static auto registry = torch::RegisterOperators()
.op("torch_scatter::scatter_sum", &scatter_sum)
.op("torch_scatter::scatter_mul", &scatter_mul)
.op("torch_scatter::scatter_mean", &scatter_mean)
.op("torch_scatter::scatter_min", &scatter_min)
.op("torch_scatter::scatter_max", &scatter_max);
|