File: softmax.py

package info (click to toggle)
pytorch-scatter 2.1.2-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,128 kB
  • sloc: python: 1,574; cpp: 1,379; sh: 58; makefile: 13
file content (51 lines) | stat: -rw-r--r-- 1,865 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from typing import Optional

import torch

from torch_scatter import scatter_sum, scatter_max
from torch_scatter.utils import broadcast


def scatter_softmax(src: torch.Tensor, index: torch.Tensor,
                    dim: int = -1,
                    dim_size: Optional[int] = None) -> torch.Tensor:
    if not torch.is_floating_point(src):
        raise ValueError('`scatter_softmax` can only be computed over tensors '
                         'with floating point data types.')

    index = broadcast(index, src, dim)

    max_value_per_index = scatter_max(
        src, index, dim=dim, dim_size=dim_size)[0]
    max_per_src_element = max_value_per_index.gather(dim, index)

    recentered_scores = src - max_per_src_element
    recentered_scores_exp = recentered_scores.exp_()

    sum_per_index = scatter_sum(
        recentered_scores_exp, index, dim, dim_size=dim_size)
    normalizing_constants = sum_per_index.gather(dim, index)

    return recentered_scores_exp.div(normalizing_constants)


def scatter_log_softmax(src: torch.Tensor, index: torch.Tensor, dim: int = -1,
                        eps: float = 1e-12,
                        dim_size: Optional[int] = None) -> torch.Tensor:
    if not torch.is_floating_point(src):
        raise ValueError('`scatter_log_softmax` can only be computed over '
                         'tensors with floating point data types.')

    index = broadcast(index, src, dim)

    max_value_per_index = scatter_max(
        src, index, dim=dim, dim_size=dim_size)[0]
    max_per_src_element = max_value_per_index.gather(dim, index)

    recentered_scores = src - max_per_src_element

    sum_per_index = scatter_sum(
        recentered_scores.exp(), index, dim, dim_size=dim_size)
    normalizing_constants = sum_per_index.add_(eps).log_().gather(dim, index)

    return recentered_scores.sub_(normalizing_constants)