1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
from typing import Optional, Tuple
import torch
def segment_sum_coo(src: torch.Tensor, index: torch.Tensor,
out: Optional[torch.Tensor] = None,
dim_size: Optional[int] = None) -> torch.Tensor:
return torch.ops.torch_scatter.segment_sum_coo(src, index, out, dim_size)
def segment_add_coo(src: torch.Tensor, index: torch.Tensor,
out: Optional[torch.Tensor] = None,
dim_size: Optional[int] = None) -> torch.Tensor:
return torch.ops.torch_scatter.segment_sum_coo(src, index, out, dim_size)
def segment_mean_coo(src: torch.Tensor, index: torch.Tensor,
out: Optional[torch.Tensor] = None,
dim_size: Optional[int] = None) -> torch.Tensor:
return torch.ops.torch_scatter.segment_mean_coo(src, index, out, dim_size)
def segment_min_coo(
src: torch.Tensor, index: torch.Tensor,
out: Optional[torch.Tensor] = None,
dim_size: Optional[int] = None) -> Tuple[torch.Tensor, torch.Tensor]:
return torch.ops.torch_scatter.segment_min_coo(src, index, out, dim_size)
def segment_max_coo(
src: torch.Tensor, index: torch.Tensor,
out: Optional[torch.Tensor] = None,
dim_size: Optional[int] = None) -> Tuple[torch.Tensor, torch.Tensor]:
return torch.ops.torch_scatter.segment_max_coo(src, index, out, dim_size)
def segment_coo(src: torch.Tensor, index: torch.Tensor,
out: Optional[torch.Tensor] = None,
dim_size: Optional[int] = None,
reduce: str = "sum") -> torch.Tensor:
r"""
|
.. image:: https://raw.githubusercontent.com/rusty1s/pytorch_scatter/
master/docs/source/_figures/segment_coo.svg?sanitize=true
:align: center
:width: 400px
|
Reduces all values from the :attr:`src` tensor into :attr:`out` at the
indices specified in the :attr:`index` tensor along the last dimension of
:attr:`index`.
For each value in :attr:`src`, its output index is specified by its index
in :attr:`src` for dimensions outside of :obj:`index.dim() - 1` and by the
corresponding value in :attr:`index` for dimension :obj:`index.dim() - 1`.
The applied reduction is defined via the :attr:`reduce` argument.
Formally, if :attr:`src` and :attr:`index` are :math:`n`-dimensional and
:math:`m`-dimensional tensors with
size :math:`(x_0, ..., x_{m-1}, x_m, x_{m+1}, ..., x_{n-1})` and
:math:`(x_0, ..., x_{m-1}, x_m)`, respectively, then :attr:`out` must be an
:math:`n`-dimensional tensor with size
:math:`(x_0, ..., x_{m-1}, y, x_{m+1}, ..., x_{n-1})`.
Moreover, the values of :attr:`index` must be between :math:`0` and
:math:`y - 1` in ascending order.
The :attr:`index` tensor supports broadcasting in case its dimensions do
not match with :attr:`src`.
For one-dimensional tensors with :obj:`reduce="sum"`, the operation
computes
.. math::
\mathrm{out}_i = \mathrm{out}_i + \sum_j~\mathrm{src}_j
where :math:`\sum_j` is over :math:`j` such that
:math:`\mathrm{index}_j = i`.
In contrast to :meth:`scatter`, this method expects values in :attr:`index`
**to be sorted** along dimension :obj:`index.dim() - 1`.
Due to the use of sorted indices, :meth:`segment_coo` is usually faster
than the more general :meth:`scatter` operation.
.. note::
This operation is implemented via atomic operations on the GPU and is
therefore **non-deterministic** since the order of parallel operations
to the same value is undetermined.
For floating-point variables, this results in a source of variance in
the result.
:param src: The source tensor.
:param index: The sorted indices of elements to segment.
The number of dimensions of :attr:`index` needs to be less than or
equal to :attr:`src`.
:param out: The destination tensor.
:param dim_size: If :attr:`out` is not given, automatically create output
with size :attr:`dim_size` at dimension :obj:`index.dim() - 1`.
If :attr:`dim_size` is not given, a minimal sized output tensor
according to :obj:`index.max() + 1` is returned.
:param reduce: The reduce operation (:obj:`"sum"`, :obj:`"mean"`,
:obj:`"min"` or :obj:`"max"`). (default: :obj:`"sum"`)
:rtype: :class:`Tensor`
.. code-block:: python
from torch_scatter import segment_coo
src = torch.randn(10, 6, 64)
index = torch.tensor([0, 0, 1, 1, 1, 2])
index = index.view(1, -1) # Broadcasting in the first and last dim.
out = segment_coo(src, index, reduce="sum")
print(out.size())
.. code-block::
torch.Size([10, 3, 64])
"""
if reduce == 'sum' or reduce == 'add':
return segment_sum_coo(src, index, out, dim_size)
elif reduce == 'mean':
return segment_mean_coo(src, index, out, dim_size)
elif reduce == 'min':
return segment_min_coo(src, index, out, dim_size)[0]
elif reduce == 'max':
return segment_max_coo(src, index, out, dim_size)[0]
else:
raise ValueError
def gather_coo(src: torch.Tensor, index: torch.Tensor,
out: Optional[torch.Tensor] = None) -> torch.Tensor:
return torch.ops.torch_scatter.gather_coo(src, index, out)
|