1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
import argparse
import itertools
import os.path as osp
import time
import torch
import wget
from scipy.io import loadmat
from torch_scatter import scatter_add
from torch_sparse.tensor import SparseTensor
short_rows = [
('DIMACS10', 'citationCiteseer'),
('SNAP', 'web-Stanford'),
]
long_rows = [
('Janna', 'StocF-1465'),
('GHS_psdef', 'ldoor'),
]
def download(dataset):
url = 'https://sparse.tamu.edu/mat/{}/{}.mat'
for group, name in itertools.chain(long_rows, short_rows):
if not osp.exists(f'{name}.mat'):
print(f'Downloading {group}/{name}:')
wget.download(url.format(group, name))
print('')
def bold(text, flag=True):
return f'\033[1m{text}\033[0m' if flag else text
@torch.no_grad()
def correctness(dataset):
group, name = dataset
mat_scipy = loadmat(f'{name}.mat')['Problem'][0][0][2].tocsr()
row = torch.from_numpy(mat_scipy.tocoo().row).to(args.device, torch.long)
col = torch.from_numpy(mat_scipy.tocoo().col).to(args.device, torch.long)
mat = SparseTensor(row=row, col=col, sparse_sizes=mat_scipy.shape)
mat.fill_cache_()
mat_pytorch = mat.to_torch_sparse_coo_tensor().coalesce()
for size in sizes:
try:
x = torch.randn((mat.size(1), size), device=args.device)
out1 = mat @ x
out2 = mat_pytorch @ x
assert torch.allclose(out1, out2, atol=1e-4)
except RuntimeError as e:
if 'out of memory' not in str(e):
raise RuntimeError(e)
torch.cuda.empty_cache()
def time_func(func, x):
try:
if torch.cuda.is_available():
torch.cuda.synchronize()
elif torch.backends.mps.is_available():
import torch.mps
torch.mps.synchronize()
t = time.perf_counter()
if not args.with_backward:
with torch.no_grad():
for _ in range(iters):
func(x)
else:
x = x.requires_grad_()
for _ in range(iters):
out = func(x)
out = out[0] if isinstance(out, tuple) else out
torch.autograd.grad(out, x, out, only_inputs=True)
if torch.cuda.is_available():
torch.cuda.synchronize()
elif torch.backends.mps.is_available():
import torch.mps
torch.mps.synchronize()
return time.perf_counter() - t
except RuntimeError as e:
if 'out of memory' not in str(e):
raise RuntimeError(e)
torch.cuda.empty_cache()
return float('inf')
def timing(dataset):
group, name = dataset
mat_scipy = loadmat(f'{name}.mat')['Problem'][0][0][2].tocsr()
row = torch.from_numpy(mat_scipy.tocoo().row).to(args.device, torch.long)
col = torch.from_numpy(mat_scipy.tocoo().col).to(args.device, torch.long)
mat = SparseTensor(row=row, col=col, sparse_sizes=mat_scipy.shape)
mat.fill_cache_()
mat_pytorch = mat.to_torch_sparse_coo_tensor().coalesce()
mat_scipy = mat.to_scipy(layout='csr')
def scatter(x):
return scatter_add(x[col], row, dim=0, dim_size=mat_scipy.shape[0])
def spmm_scipy(x):
if x.is_cuda:
raise RuntimeError('out of memory')
return mat_scipy @ x
def spmm_pytorch(x):
return mat_pytorch @ x
def spmm(x):
return mat @ x
t1, t2, t3, t4 = [], [], [], []
for size in sizes:
try:
x = torch.randn((mat.size(1), size), device=args.device)
t1 += [time_func(scatter, x)]
t2 += [time_func(spmm_scipy, x)]
t3 += [time_func(spmm_pytorch, x)]
t4 += [time_func(spmm, x)]
del x
except RuntimeError as e:
if 'out of memory' not in str(e):
raise RuntimeError(e)
torch.cuda.empty_cache()
for t in (t1, t2, t3, t4):
t.append(float('inf'))
ts = torch.tensor([t1, t2, t3, t4])
winner = torch.zeros_like(ts, dtype=torch.bool)
winner[ts.argmin(dim=0), torch.arange(len(sizes))] = 1
winner = winner.tolist()
name = f'{group}/{name}'
print(f'{bold(name)} (avg row length: {mat.avg_row_length():.2f}):')
print('\t'.join([' '] + [f'{size:>5}' for size in sizes]))
print('\t'.join([bold('Scatter ')] +
[bold(f'{t:.5f}', f) for t, f in zip(t1, winner[0])]))
print('\t'.join([bold('SPMM SciPy ')] +
[bold(f'{t:.5f}', f) for t, f in zip(t2, winner[1])]))
print('\t'.join([bold('SPMM PyTorch')] +
[bold(f'{t:.5f}', f) for t, f in zip(t3, winner[2])]))
print('\t'.join([bold('SPMM Own ')] +
[bold(f'{t:.5f}', f) for t, f in zip(t4, winner[3])]))
print()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--with_backward', action='store_true')
parser.add_argument('--device', type=str, default='cuda')
args = parser.parse_args()
iters = 1 if args.device == 'cpu' else 20
sizes = [1, 16, 32, 64, 128, 256, 512]
sizes = sizes[:4] if args.device == 'cpu' else sizes
for _ in range(10): # Warmup.
torch.randn(100, 100, device=args.device).sum()
for dataset in itertools.chain(short_rows, long_rows):
download(dataset)
correctness(dataset)
timing(dataset)
|