File: main.py

package info (click to toggle)
pytorch-sparse 0.6.18-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 984 kB
  • sloc: python: 3,646; cpp: 2,444; sh: 54; makefile: 6
file content (171 lines) | stat: -rw-r--r-- 5,423 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import argparse
import itertools
import os.path as osp
import time

import torch
import wget
from scipy.io import loadmat
from torch_scatter import scatter_add

from torch_sparse.tensor import SparseTensor

short_rows = [
    ('DIMACS10', 'citationCiteseer'),
    ('SNAP', 'web-Stanford'),
]
long_rows = [
    ('Janna', 'StocF-1465'),
    ('GHS_psdef', 'ldoor'),
]


def download(dataset):
    url = 'https://sparse.tamu.edu/mat/{}/{}.mat'
    for group, name in itertools.chain(long_rows, short_rows):
        if not osp.exists(f'{name}.mat'):
            print(f'Downloading {group}/{name}:')
            wget.download(url.format(group, name))
            print('')


def bold(text, flag=True):
    return f'\033[1m{text}\033[0m' if flag else text


@torch.no_grad()
def correctness(dataset):
    group, name = dataset
    mat_scipy = loadmat(f'{name}.mat')['Problem'][0][0][2].tocsr()
    row = torch.from_numpy(mat_scipy.tocoo().row).to(args.device, torch.long)
    col = torch.from_numpy(mat_scipy.tocoo().col).to(args.device, torch.long)
    mat = SparseTensor(row=row, col=col, sparse_sizes=mat_scipy.shape)
    mat.fill_cache_()
    mat_pytorch = mat.to_torch_sparse_coo_tensor().coalesce()

    for size in sizes:
        try:
            x = torch.randn((mat.size(1), size), device=args.device)

            out1 = mat @ x
            out2 = mat_pytorch @ x

            assert torch.allclose(out1, out2, atol=1e-4)

        except RuntimeError as e:
            if 'out of memory' not in str(e):
                raise RuntimeError(e)
            torch.cuda.empty_cache()


def time_func(func, x):
    try:
        if torch.cuda.is_available():
            torch.cuda.synchronize()
        elif torch.backends.mps.is_available():
            import torch.mps
            torch.mps.synchronize()
        t = time.perf_counter()

        if not args.with_backward:
            with torch.no_grad():
                for _ in range(iters):
                    func(x)
        else:
            x = x.requires_grad_()
            for _ in range(iters):
                out = func(x)
                out = out[0] if isinstance(out, tuple) else out
                torch.autograd.grad(out, x, out, only_inputs=True)

        if torch.cuda.is_available():
            torch.cuda.synchronize()
        elif torch.backends.mps.is_available():
            import torch.mps
            torch.mps.synchronize()
        return time.perf_counter() - t
    except RuntimeError as e:
        if 'out of memory' not in str(e):
            raise RuntimeError(e)
        torch.cuda.empty_cache()
        return float('inf')


def timing(dataset):
    group, name = dataset
    mat_scipy = loadmat(f'{name}.mat')['Problem'][0][0][2].tocsr()
    row = torch.from_numpy(mat_scipy.tocoo().row).to(args.device, torch.long)
    col = torch.from_numpy(mat_scipy.tocoo().col).to(args.device, torch.long)
    mat = SparseTensor(row=row, col=col, sparse_sizes=mat_scipy.shape)
    mat.fill_cache_()
    mat_pytorch = mat.to_torch_sparse_coo_tensor().coalesce()
    mat_scipy = mat.to_scipy(layout='csr')

    def scatter(x):
        return scatter_add(x[col], row, dim=0, dim_size=mat_scipy.shape[0])

    def spmm_scipy(x):
        if x.is_cuda:
            raise RuntimeError('out of memory')
        return mat_scipy @ x

    def spmm_pytorch(x):
        return mat_pytorch @ x

    def spmm(x):
        return mat @ x

    t1, t2, t3, t4 = [], [], [], []

    for size in sizes:
        try:
            x = torch.randn((mat.size(1), size), device=args.device)

            t1 += [time_func(scatter, x)]
            t2 += [time_func(spmm_scipy, x)]
            t3 += [time_func(spmm_pytorch, x)]
            t4 += [time_func(spmm, x)]

            del x

        except RuntimeError as e:
            if 'out of memory' not in str(e):
                raise RuntimeError(e)
            torch.cuda.empty_cache()
            for t in (t1, t2, t3, t4):
                t.append(float('inf'))

    ts = torch.tensor([t1, t2, t3, t4])
    winner = torch.zeros_like(ts, dtype=torch.bool)
    winner[ts.argmin(dim=0), torch.arange(len(sizes))] = 1
    winner = winner.tolist()

    name = f'{group}/{name}'
    print(f'{bold(name)} (avg row length: {mat.avg_row_length():.2f}):')
    print('\t'.join(['            '] + [f'{size:>5}' for size in sizes]))
    print('\t'.join([bold('Scatter     ')] +
                    [bold(f'{t:.5f}', f) for t, f in zip(t1, winner[0])]))
    print('\t'.join([bold('SPMM SciPy  ')] +
                    [bold(f'{t:.5f}', f) for t, f in zip(t2, winner[1])]))
    print('\t'.join([bold('SPMM PyTorch')] +
                    [bold(f'{t:.5f}', f) for t, f in zip(t3, winner[2])]))
    print('\t'.join([bold('SPMM Own    ')] +
                    [bold(f'{t:.5f}', f) for t, f in zip(t4, winner[3])]))
    print()


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--with_backward', action='store_true')
    parser.add_argument('--device', type=str, default='cuda')
    args = parser.parse_args()
    iters = 1 if args.device == 'cpu' else 20
    sizes = [1, 16, 32, 64, 128, 256, 512]
    sizes = sizes[:4] if args.device == 'cpu' else sizes

    for _ in range(10):  # Warmup.
        torch.randn(100, 100, device=args.device).sum()
    for dataset in itertools.chain(short_rows, long_rows):
        download(dataset)
        correctness(dataset)
        timing(dataset)