File: ego_sample_cpu.cpp

package info (click to toggle)
pytorch-sparse 0.6.18-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 984 kB
  • sloc: python: 3,646; cpp: 2,444; sh: 54; makefile: 6
file content (132 lines) | stat: -rw-r--r-- 4,447 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#include "ego_sample_cpu.h"

#include <ATen/Parallel.h>

#include "utils.h"

#ifdef _WIN32
#include <process.h>
#endif

inline torch::Tensor vec2tensor(std::vector<int64_t> vec) {
  return torch::from_blob(vec.data(), {(int64_t)vec.size()}, at::kLong).clone();
}

// Returns `rowptr`, `col`, `n_id`, `e_id`, `ptr`, `root_n_id`
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor,
           torch::Tensor, torch::Tensor>
ego_k_hop_sample_adj_cpu(torch::Tensor rowptr, torch::Tensor col,
                         torch::Tensor idx, int64_t depth,
                         int64_t num_neighbors, bool replace) {

  std::vector<torch::Tensor> out_rowptrs(idx.numel() + 1);
  std::vector<torch::Tensor> out_cols(idx.numel());
  std::vector<torch::Tensor> out_n_ids(idx.numel());
  std::vector<torch::Tensor> out_e_ids(idx.numel());
  auto out_root_n_id = torch::empty({idx.numel()}, at::kLong);
  out_rowptrs[0] = torch::zeros({1}, at::kLong);

  auto rowptr_data = rowptr.data_ptr<int64_t>();
  auto col_data = col.data_ptr<int64_t>();
  auto idx_data = idx.data_ptr<int64_t>();
  auto out_root_n_id_data = out_root_n_id.data_ptr<int64_t>();

  at::parallel_for(0, idx.numel(), 1, [&](int64_t begin, int64_t end) {
    int64_t row_start, row_end, row_count, vec_start, vec_end, v, w;
    for (int64_t g = begin; g < end; g++) {
      std::set<int64_t> n_id_set;
      n_id_set.insert(idx_data[g]);
      std::vector<int64_t> n_ids;
      n_ids.push_back(idx_data[g]);

      vec_start = 0, vec_end = n_ids.size();
      for (int64_t d = 0; d < depth; d++) {
        for (int64_t i = vec_start; i < vec_end; i++) {
          v = n_ids[i];
          row_start = rowptr_data[v], row_end = rowptr_data[v + 1];
          row_count = row_end - row_start;

          if (row_count <= num_neighbors) {
            for (int64_t e = row_start; e < row_end; e++) {
              w = col_data[e];
              n_id_set.insert(w);
              n_ids.push_back(w);
            }
          } else if (replace) {
            for (int64_t j = 0; j < num_neighbors; j++) {
              w = col_data[row_start + uniform_randint(row_count)];
              n_id_set.insert(w);
              n_ids.push_back(w);
            }
          } else {
            std::unordered_set<int64_t> perm;
            for (int64_t j = row_count - num_neighbors; j < row_count; j++) {
              if (!perm.insert(uniform_randint(j)).second) {
                perm.insert(j);
              }
            }
            for (int64_t j : perm) {
              w = col_data[row_start + j];
              n_id_set.insert(w);
              n_ids.push_back(w);
            }
          }
        }
        vec_start = vec_end;
        vec_end = n_ids.size();
      }

      n_ids.clear();
      std::map<int64_t, int64_t> n_id_map;
      std::map<int64_t, int64_t>::iterator iter;

      int64_t i = 0;
      for (int64_t v : n_id_set) {
        n_ids.push_back(v);
        n_id_map[v] = i;
        i++;
      }

      out_root_n_id_data[g] = n_id_map[idx_data[g]];

      std::vector<int64_t> rowptrs, cols, e_ids;
      for (int64_t v : n_ids) {
        row_start = rowptr_data[v], row_end = rowptr_data[v + 1];
        for (int64_t e = row_start; e < row_end; e++) {
          w = col_data[e];
          iter = n_id_map.find(w);
          if (iter != n_id_map.end()) {
            cols.push_back(iter->second);
            e_ids.push_back(e);
          }
        }
        rowptrs.push_back(cols.size());
      }

      out_rowptrs[g + 1] = vec2tensor(rowptrs);
      out_cols[g] = vec2tensor(cols);
      out_n_ids[g] = vec2tensor(n_ids);
      out_e_ids[g] = vec2tensor(e_ids);
    }
  });

  auto out_ptr = torch::empty({idx.numel() + 1}, at::kLong);
  auto out_ptr_data = out_ptr.data_ptr<int64_t>();
  out_ptr_data[0] = 0;

  int64_t node_cumsum = 0, edge_cumsum = 0;
  for (int64_t g = 1; g < idx.numel(); g++) {
    node_cumsum += out_n_ids[g - 1].numel();
    edge_cumsum += out_cols[g - 1].numel();
    out_rowptrs[g + 1].add_(edge_cumsum);
    out_cols[g].add_(node_cumsum);
    out_ptr_data[g] = node_cumsum;
    out_root_n_id_data[g] += node_cumsum;
  }
  node_cumsum += out_n_ids[idx.numel() - 1].numel();
  out_ptr_data[idx.numel()] = node_cumsum;

  return std::make_tuple(torch::cat(out_rowptrs, 0), torch::cat(out_cols, 0),
                         torch::cat(out_n_ids, 0), torch::cat(out_e_ids, 0),
                         out_ptr, out_root_n_id);
}