1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
#include "ego_sample_cpu.h"
#include <ATen/Parallel.h>
#include "utils.h"
#ifdef _WIN32
#include <process.h>
#endif
inline torch::Tensor vec2tensor(std::vector<int64_t> vec) {
return torch::from_blob(vec.data(), {(int64_t)vec.size()}, at::kLong).clone();
}
// Returns `rowptr`, `col`, `n_id`, `e_id`, `ptr`, `root_n_id`
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor,
torch::Tensor, torch::Tensor>
ego_k_hop_sample_adj_cpu(torch::Tensor rowptr, torch::Tensor col,
torch::Tensor idx, int64_t depth,
int64_t num_neighbors, bool replace) {
std::vector<torch::Tensor> out_rowptrs(idx.numel() + 1);
std::vector<torch::Tensor> out_cols(idx.numel());
std::vector<torch::Tensor> out_n_ids(idx.numel());
std::vector<torch::Tensor> out_e_ids(idx.numel());
auto out_root_n_id = torch::empty({idx.numel()}, at::kLong);
out_rowptrs[0] = torch::zeros({1}, at::kLong);
auto rowptr_data = rowptr.data_ptr<int64_t>();
auto col_data = col.data_ptr<int64_t>();
auto idx_data = idx.data_ptr<int64_t>();
auto out_root_n_id_data = out_root_n_id.data_ptr<int64_t>();
at::parallel_for(0, idx.numel(), 1, [&](int64_t begin, int64_t end) {
int64_t row_start, row_end, row_count, vec_start, vec_end, v, w;
for (int64_t g = begin; g < end; g++) {
std::set<int64_t> n_id_set;
n_id_set.insert(idx_data[g]);
std::vector<int64_t> n_ids;
n_ids.push_back(idx_data[g]);
vec_start = 0, vec_end = n_ids.size();
for (int64_t d = 0; d < depth; d++) {
for (int64_t i = vec_start; i < vec_end; i++) {
v = n_ids[i];
row_start = rowptr_data[v], row_end = rowptr_data[v + 1];
row_count = row_end - row_start;
if (row_count <= num_neighbors) {
for (int64_t e = row_start; e < row_end; e++) {
w = col_data[e];
n_id_set.insert(w);
n_ids.push_back(w);
}
} else if (replace) {
for (int64_t j = 0; j < num_neighbors; j++) {
w = col_data[row_start + uniform_randint(row_count)];
n_id_set.insert(w);
n_ids.push_back(w);
}
} else {
std::unordered_set<int64_t> perm;
for (int64_t j = row_count - num_neighbors; j < row_count; j++) {
if (!perm.insert(uniform_randint(j)).second) {
perm.insert(j);
}
}
for (int64_t j : perm) {
w = col_data[row_start + j];
n_id_set.insert(w);
n_ids.push_back(w);
}
}
}
vec_start = vec_end;
vec_end = n_ids.size();
}
n_ids.clear();
std::map<int64_t, int64_t> n_id_map;
std::map<int64_t, int64_t>::iterator iter;
int64_t i = 0;
for (int64_t v : n_id_set) {
n_ids.push_back(v);
n_id_map[v] = i;
i++;
}
out_root_n_id_data[g] = n_id_map[idx_data[g]];
std::vector<int64_t> rowptrs, cols, e_ids;
for (int64_t v : n_ids) {
row_start = rowptr_data[v], row_end = rowptr_data[v + 1];
for (int64_t e = row_start; e < row_end; e++) {
w = col_data[e];
iter = n_id_map.find(w);
if (iter != n_id_map.end()) {
cols.push_back(iter->second);
e_ids.push_back(e);
}
}
rowptrs.push_back(cols.size());
}
out_rowptrs[g + 1] = vec2tensor(rowptrs);
out_cols[g] = vec2tensor(cols);
out_n_ids[g] = vec2tensor(n_ids);
out_e_ids[g] = vec2tensor(e_ids);
}
});
auto out_ptr = torch::empty({idx.numel() + 1}, at::kLong);
auto out_ptr_data = out_ptr.data_ptr<int64_t>();
out_ptr_data[0] = 0;
int64_t node_cumsum = 0, edge_cumsum = 0;
for (int64_t g = 1; g < idx.numel(); g++) {
node_cumsum += out_n_ids[g - 1].numel();
edge_cumsum += out_cols[g - 1].numel();
out_rowptrs[g + 1].add_(edge_cumsum);
out_cols[g].add_(node_cumsum);
out_ptr_data[g] = node_cumsum;
out_root_n_id_data[g] += node_cumsum;
}
node_cumsum += out_n_ids[idx.numel() - 1].numel();
out_ptr_data[idx.numel()] = node_cumsum;
return std::make_tuple(torch::cat(out_rowptrs, 0), torch::cat(out_cols, 0),
torch::cat(out_n_ids, 0), torch::cat(out_e_ids, 0),
out_ptr, out_root_n_id);
}
|