1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
#include "hgt_sample_cpu.h"
#include "utils.h"
#ifdef _WIN32
#include <process.h>
#endif
#define MAX_NEIGHBORS 50
using namespace std;
edge_t split(const rel_t &rel_type) {
vector<string> result(3);
int start = 0, end;
for (int i = 0; i < 3; i++) {
end = rel_type.find("__", start);
result[i] = rel_type.substr(start, end - start);
start = end + 2;
}
return make_tuple(result[0], result[1], result[2]);
}
void update_budget_(
unordered_map<node_t, unordered_map<int64_t, float>> *budget_dict,
const node_t &node_type, const vector<int64_t> &samples,
const unordered_map<node_t, unordered_map<int64_t, int64_t>>
&to_local_node_dict,
const unordered_map<rel_t, edge_t> &to_edge_type,
const c10::Dict<rel_t, torch::Tensor> &colptr_dict,
const c10::Dict<rel_t, torch::Tensor> &row_dict) {
if (samples.empty())
return;
for (const auto &kv : colptr_dict) {
const auto &rel_type = kv.key();
const auto &edge_type = to_edge_type.at(rel_type);
const auto &src_node_type = get<0>(edge_type);
const auto &dst_node_type = get<2>(edge_type);
if (node_type != dst_node_type)
continue;
const auto &to_local_src_node = to_local_node_dict.at(src_node_type);
const auto *colptr_data = kv.value().data_ptr<int64_t>();
const auto *row_data = row_dict.at(rel_type).data_ptr<int64_t>();
auto &src_budget = budget_dict->at(src_node_type);
for (const auto &w : samples) {
const auto &col_start = colptr_data[w], &col_end = colptr_data[w + 1];
if (col_end - col_start > MAX_NEIGHBORS) {
// There might be same neighbors with large neighborhood sizes.
// In order to prevent that we fill our budget with many values of low
// probability, we instead sample a fixed amount without replacement:
auto indices = choice(col_end - col_start, MAX_NEIGHBORS, false);
auto *indices_data = indices.data_ptr<int64_t>();
for (int64_t i = 0; i < indices.numel(); i++) {
const auto &v = row_data[col_start + indices_data[i]];
// Only add the neighbor in case we have not yet seen it before:
if (to_local_src_node.find(v) == to_local_src_node.end())
src_budget[v] += 1.f / float(MAX_NEIGHBORS);
}
} else if (col_end != col_start) {
const auto inv_deg = 1.f / float(col_end - col_start);
for (int64_t i = col_start; i < col_end; i++) {
const auto &v = row_data[i];
// Only add the neighbor in case we have not yet seen it before:
if (to_local_src_node.find(v) == to_local_src_node.end())
src_budget[v] += inv_deg;
}
}
}
}
}
vector<int64_t> sample_from(const unordered_map<int64_t, float> &budget,
const int64_t num_samples) {
vector<int64_t> indices;
vector<float> weights;
indices.reserve(budget.size());
weights.reserve(budget.size());
for (const auto &kv : budget) {
indices.push_back(kv.first);
weights.push_back(kv.second * kv.second);
}
const auto weight = from_vector(weights, true);
const auto sample = choice(budget.size(), num_samples, false, weight);
const auto *sample_data = sample.data_ptr<int64_t>();
vector<int64_t> out(sample.numel());
for (int64_t i = 0; i < sample.numel(); i++) {
out[i] = indices[sample_data[i]];
}
return out;
}
tuple<c10::Dict<node_t, torch::Tensor>, c10::Dict<rel_t, torch::Tensor>,
c10::Dict<rel_t, torch::Tensor>, c10::Dict<rel_t, torch::Tensor>>
hgt_sample_cpu(const c10::Dict<rel_t, torch::Tensor> &colptr_dict,
const c10::Dict<rel_t, torch::Tensor> &row_dict,
const c10::Dict<node_t, torch::Tensor> &input_node_dict,
const c10::Dict<node_t, vector<int64_t>> &num_samples_dict,
const int64_t num_hops) {
// Create a mapping to convert single string relations to edge type triplets:
unordered_map<rel_t, edge_t> to_edge_type;
for (const auto &kv : colptr_dict) {
const auto &rel_type = kv.key();
to_edge_type[rel_type] = split(rel_type);
}
// Initialize some necessary data structures for the sampling process:
unordered_map<node_t, vector<int64_t>> nodes_dict;
unordered_map<node_t, unordered_map<int64_t, int64_t>> to_local_node_dict;
unordered_map<node_t, unordered_map<int64_t, float>> budget_dict;
for (const auto &kv : num_samples_dict) {
const auto &node_type = kv.key();
nodes_dict[node_type];
to_local_node_dict[node_type];
budget_dict[node_type];
}
// Add the input nodes to the sampled output nodes (line 1):
for (const auto &kv : input_node_dict) {
const auto &node_type = kv.key();
const auto &input_node = kv.value();
const auto *input_node_data = input_node.data_ptr<int64_t>();
auto &nodes = nodes_dict.at(node_type);
auto &to_local_node = to_local_node_dict.at(node_type);
for (int64_t i = 0; i < input_node.numel(); i++) {
const auto &v = input_node_data[i];
nodes.push_back(v);
to_local_node[v] = i;
}
}
// Update the budget based on the initial input set (line 3-5):
for (const auto &kv : nodes_dict) {
const auto &node_type = kv.first;
const auto &last_samples = kv.second;
update_budget_(&budget_dict, node_type, last_samples, to_local_node_dict,
to_edge_type, colptr_dict, row_dict);
}
for (int64_t ell = 0; ell < num_hops; ell++) {
unordered_map<node_t, vector<int64_t>> samples_dict;
for (auto &kv : budget_dict) {
const auto &node_type = kv.first;
auto &budget = kv.second;
const auto num_samples = num_samples_dict.at(node_type)[ell];
// Sample `num_samples` nodes, according to the budget (line 9-11):
const auto samples = sample_from(budget, num_samples);
samples_dict[node_type] = samples;
// Add samples to the sampled output nodes, and erase them from the budget
// (line 13/15):
auto &nodes = nodes_dict.at(node_type);
auto &to_local_node = to_local_node_dict.at(node_type);
for (const auto &v : samples) {
to_local_node[v] = nodes.size();
nodes.push_back(v);
budget.erase(v);
}
}
if (ell < num_hops - 1) {
// Add neighbors of newly sampled nodes to the budget (line 14):
// Note that we do not need to update the budget in the last iteration.
for (const auto &kv : samples_dict) {
const auto &node_type = kv.first;
const auto &last_samples = kv.second;
update_budget_(&budget_dict, node_type, last_samples,
to_local_node_dict, to_edge_type, colptr_dict, row_dict);
}
}
}
c10::Dict<node_t, torch::Tensor> out_node_dict;
c10::Dict<rel_t, torch::Tensor> out_row_dict;
c10::Dict<rel_t, torch::Tensor> out_col_dict;
c10::Dict<rel_t, torch::Tensor> out_edge_dict;
// Reconstruct the sampled adjacency matrix among the sampled nodes (line 19):
for (const auto &kv : colptr_dict) {
const auto &rel_type = kv.key();
const auto &edge_type = to_edge_type.at(rel_type);
const auto &src_node_type = get<0>(edge_type);
const auto &dst_node_type = get<2>(edge_type);
const auto *colptr_data = kv.value().data_ptr<int64_t>();
const auto *row_data = row_dict.at(rel_type).data_ptr<int64_t>();
const auto &dst_nodes = nodes_dict.at(dst_node_type);
const auto &to_local_src_node = to_local_node_dict.at(src_node_type);
vector<int64_t> rows, cols, edges;
for (int64_t i = 0; i < (int64_t)dst_nodes.size(); i++) {
const auto &w = dst_nodes[i];
const auto &col_start = colptr_data[w], &col_end = colptr_data[w + 1];
if (col_end - col_start > MAX_NEIGHBORS) {
auto indices = choice(col_end - col_start, MAX_NEIGHBORS, false);
auto *indices_data = indices.data_ptr<int64_t>();
for (int64_t j = 0; j < indices.numel(); j++) {
const auto &v = row_data[col_start + indices_data[j]];
if (to_local_src_node.find(v) != to_local_src_node.end()) {
rows.push_back(to_local_src_node.at(v));
cols.push_back(i);
edges.push_back(col_start + j);
}
}
} else {
for (int64_t j = col_start; j < col_end; j++) {
const auto &v = row_data[j];
if (to_local_src_node.find(v) != to_local_src_node.end()) {
rows.push_back(to_local_src_node.at(v));
cols.push_back(i);
edges.push_back(j);
}
}
}
}
out_row_dict.insert(rel_type, from_vector<int64_t>(rows));
out_col_dict.insert(rel_type, from_vector<int64_t>(cols));
out_edge_dict.insert(rel_type, from_vector<int64_t>(edges));
}
// Generate tensor-valued output node dictionary (line 20):
for (const auto &kv : nodes_dict) {
const auto &node_type = kv.first;
const auto &nodes = kv.second;
if (!nodes.empty())
out_node_dict.insert(node_type, from_vector<int64_t>(nodes));
}
return make_tuple(out_node_dict, out_row_dict, out_col_dict, out_edge_dict);
}
|