1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
|
#include "rw_cpu.h"
#include "utils.h"
torch::Tensor random_walk_cpu(torch::Tensor rowptr, torch::Tensor col,
torch::Tensor start, int64_t walk_length) {
CHECK_CPU(rowptr);
CHECK_CPU(col);
CHECK_CPU(start);
CHECK_INPUT(rowptr.dim() == 1);
CHECK_INPUT(col.dim() == 1);
CHECK_INPUT(start.dim() == 1);
auto rand = torch::rand({start.size(0), walk_length},
start.options().dtype(torch::kFloat));
auto L = walk_length + 1;
auto out = torch::full({start.size(0), L}, -1, start.options());
auto rowptr_data = rowptr.data_ptr<int64_t>();
auto col_data = col.data_ptr<int64_t>();
auto start_data = start.data_ptr<int64_t>();
auto rand_data = rand.data_ptr<float>();
auto out_data = out.data_ptr<int64_t>();
for (auto n = 0; n < start.size(0); n++) {
auto cur = start_data[n];
out_data[n * L] = cur;
int64_t row_start, row_end;
for (auto l = 0; l < walk_length; l++) {
row_start = rowptr_data[cur];
row_end = rowptr_data[cur + 1];
cur = col_data[row_start + int64_t(rand_data[n * walk_length + l] *
(row_end - row_start))];
out_data[n * L + l + 1] = cur;
}
}
return out;
}
|