File: spmm_cuda.cu

package info (click to toggle)
pytorch-sparse 0.6.18-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 984 kB
  • sloc: python: 3,646; cpp: 2,444; sh: 54; makefile: 6
file content (237 lines) | stat: -rw-r--r-- 7,771 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#include "spmm_cuda.h"

#include <ATen/cuda/CUDAContext.h>

#include "reducer.cuh"
#include "utils.cuh"

#define THREADS 256
#define FULL_MASK 0xffffffff

// Paper: Design Principles for Sparse Matrix Multiplication on the GPU
// Code:  https://github.com/owensgroup/merge-spmm
template <typename scalar_t, ReductionType REDUCE, bool HAS_VALUE>
__global__ void spmm_kernel(const int64_t *rowptr_data, const int64_t *col_data,
                            const scalar_t *value_data,
                            const scalar_t *mat_data, scalar_t *out_data,
                            int64_t *arg_out_data, int B, int M, int N, int K) {

  // We ignore blockIdx.y here, because threads
  // across `blockIdx.y` are treated equally.
  int thread_idx = blockDim.x * blockIdx.x + threadIdx.x;

  int row = thread_idx >> 5;            // thread_idx / 32
  int lane_idx = thread_idx & (32 - 1); // thread_idx % 32
  int batch_idx = row / M;

  // Compute the column index of `mat` in which the thread is operating.
  int mat_col_idx = lane_idx + (blockIdx.y << 5);

  // Compute the output index (row-major order).
  int out_idx = row * K + mat_col_idx;

  // Helper arrays for warp communication.
  int mat_row, mat_rows[32];
  scalar_t val, vals[HAS_VALUE ? 32 : 1];

  // Do not aggregate/write across the Y-axis (lane_idx < leftover).
  int leftover = K - (blockIdx.y << 5);

  if (batch_idx < B) {
    int row_start = __ldg(rowptr_data + (row % M));
    int row_end = __ldg(rowptr_data + (row % M) + 1);
    int col_idx = row_start + lane_idx;

    scalar_t result = Reducer<scalar_t, REDUCE>::init();
    int64_t arg;

    // Iterate over all `col` indices in parallel within a warp.
    for (int c = row_start; c < row_end; c += 32) {

      if (col_idx < row_end) {
        // Coalesced memory access into `col` and `val`.
        mat_row = __ldg(col_data + col_idx) * K;
        if (HAS_VALUE)
          val = __ldg(value_data + col_idx);
      } else {
        mat_row = -1;
        if (HAS_VALUE)
          val = (scalar_t)0;
      }
      col_idx += 32;

#pragma unroll
      for (int i = 0; i < 32; i++) {
        // Communication between all threads in a warp.
        mat_rows[i] = SHFL_SYNC(FULL_MASK, mat_row, i);
        if (HAS_VALUE)
          vals[i] = SHFL_SYNC(FULL_MASK, val, i);
      }

#pragma unroll
      for (int i = 0; i < 32; i++) {
        if (lane_idx < leftover && mat_rows[i] != -1) {
          // Coalesced memory access into `mat`.
          val = __ldg(mat_data + batch_idx * N * K + mat_rows[i] + mat_col_idx);
          if (HAS_VALUE)
            val = vals[i] * val;
          Reducer<scalar_t, REDUCE>::update(&result, val, &arg, c + i);
        }
      }
    }

    if (lane_idx < leftover) {
      // Coalesced write into `out`.
      Reducer<scalar_t, REDUCE>::write(out_data + out_idx, result,
                                       arg_out_data + out_idx, arg,
                                       row_end - row_start);
    }
  }
}

std::tuple<torch::Tensor, std::optional<torch::Tensor>>
spmm_cuda(torch::Tensor rowptr, torch::Tensor col,
          std::optional<torch::Tensor> optional_value, torch::Tensor mat,
          std::string reduce) {

  CHECK_CUDA(rowptr);
  CHECK_CUDA(col);
  if (optional_value.has_value())
    CHECK_CUDA(optional_value.value());
  CHECK_CUDA(mat);
  cudaSetDevice(rowptr.get_device());

  CHECK_INPUT(rowptr.dim() == 1);
  CHECK_INPUT(col.dim() == 1);
  if (optional_value.has_value()) {
    CHECK_INPUT(optional_value.value().dim() == 1);
    CHECK_INPUT(optional_value.value().size(0) == col.size(0));
  }
  CHECK_INPUT(mat.dim() >= 2);

  mat = mat.contiguous();

  auto sizes = mat.sizes().vec();
  sizes[mat.dim() - 2] = rowptr.numel() - 1;
  auto out = torch::empty(sizes, mat.options());

  std::optional<torch::Tensor> arg_out = std::nullopt;
  int64_t *arg_out_data = nullptr;
  if (reduce2REDUCE.at(reduce) == MIN || reduce2REDUCE.at(reduce) == MAX) {
    arg_out = torch::full_like(out, col.numel(), rowptr.options());
    arg_out_data = arg_out.value().data_ptr<int64_t>();
  }

  auto rowptr_data = rowptr.data_ptr<int64_t>();
  auto col_data = col.data_ptr<int64_t>();

  auto M = rowptr.numel() - 1;
  auto N = mat.size(-2);
  auto K = mat.size(-1);
  auto B = mat.numel() / (N * K);
  auto BLOCKS = dim3((32 * B * M + THREADS - 1) / THREADS, (K + 31) / 32);

  auto stream = at::cuda::getCurrentCUDAStream();

  AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::Half, mat.scalar_type(), "_", [&] {
    auto mat_data = mat.data_ptr<scalar_t>();
    auto out_data = out.data_ptr<scalar_t>();

    AT_DISPATCH_REDUCTION_TYPES(reduce, [&] {
      if (optional_value.has_value()) {
        auto value_data = optional_value.value().data_ptr<scalar_t>();
        spmm_kernel<scalar_t, REDUCE, true><<<BLOCKS, THREADS, 0, stream>>>(
            rowptr_data, col_data, value_data, mat_data, out_data, arg_out_data,
            B, M, N, K);
      } else {
        spmm_kernel<scalar_t, REDUCE, false><<<BLOCKS, THREADS, 0, stream>>>(
            rowptr_data, col_data, nullptr, mat_data, out_data, arg_out_data, B,
            M, N, K);
      }
    });
  });

  return std::make_tuple(out, arg_out);
}

template <typename scalar_t, ReductionType REDUCE>
__global__ void
spmm_value_bw_kernel(const int64_t *row_data, const int64_t *rowptr_data,
                     const int64_t *col_data, const scalar_t *mat_data,
                     const scalar_t *grad_data, scalar_t *out_data, int B,
                     int M, int N, int E, int K) {
  int thread_idx = blockDim.x * blockIdx.x + threadIdx.x;

  int index_idx = (thread_idx >> 5);    // thread_idx / 32
  int lane_idx = thread_idx & (32 - 1); // thread_idx % 32

  if (index_idx < E) {
    int row = __ldg(row_data + index_idx);
    int col = __ldg(col_data + index_idx);

    scalar_t val = (scalar_t)0;
    for (int b = 0; b < B; b++) {
      for (int k = lane_idx; k < K; k += 32) {
        val += mat_data[b * N * K + col * K + k] *
               grad_data[b * M * K + row * K + k];
      }
    }

#pragma unroll
    for (int i = 32 / 2; i > 0; i /= 2) { // Parallel reduction inside a warp.
      val += SHFL_DOWN_SYNC(FULL_MASK, val, i);
    }

    if (lane_idx == 0) {
      if (REDUCE == MEAN) {
        int row_start = __ldg(rowptr_data + row);
        int row_end = __ldg(rowptr_data + row + 1);
        val /= (scalar_t)max(row_end - row_start, 1);
      }
      out_data[index_idx] = val;
    }
  }
}

torch::Tensor spmm_value_bw_cuda(torch::Tensor row, torch::Tensor rowptr,
                                 torch::Tensor col, torch::Tensor mat,
                                 torch::Tensor grad, std::string reduce) {
  CHECK_CUDA(row);
  CHECK_CUDA(rowptr);
  CHECK_CUDA(col);
  CHECK_CUDA(mat);
  CHECK_CUDA(grad);
  cudaSetDevice(row.get_device());

  mat = mat.contiguous();
  grad = grad.contiguous();

  auto M = grad.size(-2);
  auto N = mat.size(-2);
  auto E = row.numel();
  auto K = mat.size(-1);
  auto B = mat.numel() / (N * K);
  auto BLOCKS = dim3((E * 32 + THREADS - 1) / THREADS);

  auto out = torch::zeros({row.numel()}, grad.options());

  auto row_data = row.data_ptr<int64_t>();
  auto rowptr_data = rowptr.data_ptr<int64_t>();
  auto col_data = col.data_ptr<int64_t>();

  auto stream = at::cuda::getCurrentCUDAStream();

  AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::Half, mat.scalar_type(), "_", [&] {
    auto mat_data = mat.data_ptr<scalar_t>();
    auto grad_data = grad.data_ptr<scalar_t>();
    auto out_data = out.data_ptr<scalar_t>();

    AT_DISPATCH_REDUCTION_TYPES(reduce, [&] {
      spmm_value_bw_kernel<scalar_t, REDUCE><<<BLOCKS, THREADS, 0, stream>>>(
          row_data, rowptr_data, col_data, mat_data, grad_data, out_data, B, M,
          N, E, K);
    });
  });

  return out;
}