File: test_storage.py

package info (click to toggle)
pytorch-sparse 0.6.18-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 984 kB
  • sloc: python: 3,646; cpp: 2,444; sh: 54; makefile: 6
file content (162 lines) | stat: -rw-r--r-- 6,032 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from itertools import product

import pytest
import torch

from torch_sparse.storage import SparseStorage
from torch_sparse.testing import devices, dtypes, tensor


@pytest.mark.parametrize('device', devices)
def test_ind2ptr(device):
    row = tensor([2, 2, 4, 5, 5, 6], torch.long, device)
    rowptr = torch.ops.torch_sparse.ind2ptr(row, 8)
    assert rowptr.tolist() == [0, 0, 0, 2, 2, 3, 5, 6, 6]

    row = torch.ops.torch_sparse.ptr2ind(rowptr, 6)
    assert row.tolist() == [2, 2, 4, 5, 5, 6]

    row = tensor([], torch.long, device)
    rowptr = torch.ops.torch_sparse.ind2ptr(row, 8)
    assert rowptr.tolist() == [0, 0, 0, 0, 0, 0, 0, 0, 0]

    row = torch.ops.torch_sparse.ptr2ind(rowptr, 0)
    assert row.tolist() == []


@pytest.mark.parametrize('dtype,device', product(dtypes, devices))
def test_storage(dtype, device):
    row, col = tensor([[0, 0, 1, 1], [0, 1, 0, 1]], torch.long, device)

    storage = SparseStorage(row=row, col=col)
    assert storage.row().tolist() == [0, 0, 1, 1]
    assert storage.col().tolist() == [0, 1, 0, 1]
    assert storage.value() is None
    assert storage.sparse_sizes() == (2, 2)

    row, col = tensor([[0, 0, 1, 1], [1, 0, 1, 0]], torch.long, device)
    value = tensor([2, 1, 4, 3], dtype, device)
    storage = SparseStorage(row=row, col=col, value=value)
    assert storage.row().tolist() == [0, 0, 1, 1]
    assert storage.col().tolist() == [0, 1, 0, 1]
    assert storage.value().tolist() == [1, 2, 3, 4]
    assert storage.sparse_sizes() == (2, 2)


@pytest.mark.parametrize('dtype,device', product(dtypes, devices))
def test_caching(dtype, device):
    row, col = tensor([[0, 0, 1, 1], [0, 1, 0, 1]], torch.long, device)
    storage = SparseStorage(row=row, col=col)

    assert storage._row.tolist() == row.tolist()
    assert storage._col.tolist() == col.tolist()
    assert storage._value is None

    assert storage._rowcount is None
    assert storage._rowptr is None
    assert storage._colcount is None
    assert storage._colptr is None
    assert storage._csr2csc is None
    assert storage.num_cached_keys() == 0

    storage.fill_cache_()
    assert storage._rowcount.tolist() == [2, 2]
    assert storage._rowptr.tolist() == [0, 2, 4]
    assert storage._colcount.tolist() == [2, 2]
    assert storage._colptr.tolist() == [0, 2, 4]
    assert storage._csr2csc.tolist() == [0, 2, 1, 3]
    assert storage._csc2csr.tolist() == [0, 2, 1, 3]
    assert storage.num_cached_keys() == 5

    storage = SparseStorage(row=row, rowptr=storage._rowptr, col=col,
                            value=storage._value,
                            sparse_sizes=storage._sparse_sizes,
                            rowcount=storage._rowcount, colptr=storage._colptr,
                            colcount=storage._colcount,
                            csr2csc=storage._csr2csc, csc2csr=storage._csc2csr)

    assert storage._rowcount.tolist() == [2, 2]
    assert storage._rowptr.tolist() == [0, 2, 4]
    assert storage._colcount.tolist() == [2, 2]
    assert storage._colptr.tolist() == [0, 2, 4]
    assert storage._csr2csc.tolist() == [0, 2, 1, 3]
    assert storage._csc2csr.tolist() == [0, 2, 1, 3]
    assert storage.num_cached_keys() == 5

    storage.clear_cache_()
    assert storage._rowcount is None
    assert storage._rowptr is not None
    assert storage._colcount is None
    assert storage._colptr is None
    assert storage._csr2csc is None
    assert storage.num_cached_keys() == 0


@pytest.mark.parametrize('dtype,device', product(dtypes, devices))
def test_utility(dtype, device):
    row, col = tensor([[0, 0, 1, 1], [1, 0, 1, 0]], torch.long, device)
    value = tensor([1, 2, 3, 4], dtype, device)
    storage = SparseStorage(row=row, col=col, value=value)

    assert storage.has_value()

    storage.set_value_(value, layout='csc')
    assert storage.value().tolist() == [1, 3, 2, 4]
    storage.set_value_(value, layout='coo')
    assert storage.value().tolist() == [1, 2, 3, 4]

    storage = storage.set_value(value, layout='csc')
    assert storage.value().tolist() == [1, 3, 2, 4]
    storage = storage.set_value(value, layout='coo')
    assert storage.value().tolist() == [1, 2, 3, 4]

    storage = storage.sparse_resize((3, 3))
    assert storage.sparse_sizes() == (3, 3)

    new_storage = storage.copy()
    assert new_storage != storage
    assert new_storage.col().data_ptr() == storage.col().data_ptr()

    new_storage = storage.clone()
    assert new_storage != storage
    assert new_storage.col().data_ptr() != storage.col().data_ptr()


@pytest.mark.parametrize('dtype,device', product(dtypes, devices))
def test_coalesce(dtype, device):
    row, col = tensor([[0, 0, 0, 1, 1], [0, 1, 1, 0, 1]], torch.long, device)
    value = tensor([1, 1, 1, 3, 4], dtype, device)
    storage = SparseStorage(row=row, col=col, value=value)

    assert storage.row().tolist() == row.tolist()
    assert storage.col().tolist() == col.tolist()
    assert storage.value().tolist() == value.tolist()

    assert not storage.is_coalesced()
    storage = storage.coalesce()
    assert storage.is_coalesced()

    assert storage.row().tolist() == [0, 0, 1, 1]
    assert storage.col().tolist() == [0, 1, 0, 1]
    assert storage.value().tolist() == [1, 2, 3, 4]


@pytest.mark.parametrize('dtype,device', product(dtypes, devices))
def test_sparse_reshape(dtype, device):
    row, col = tensor([[0, 1, 2, 3], [0, 1, 2, 3]], torch.long, device)
    storage = SparseStorage(row=row, col=col)

    storage = storage.sparse_reshape(2, 8)
    assert storage.sparse_sizes() == (2, 8)
    assert storage.row().tolist() == [0, 0, 1, 1]
    assert storage.col().tolist() == [0, 5, 2, 7]

    storage = storage.sparse_reshape(-1, 4)
    assert storage.sparse_sizes() == (4, 4)
    assert storage.row().tolist() == [0, 1, 2, 3]
    assert storage.col().tolist() == [0, 1, 2, 3]

    storage = storage.sparse_reshape(2, -1)
    assert storage.sparse_sizes() == (2, 8)
    assert storage.row().tolist() == [0, 0, 1, 1]
    assert storage.col().tolist() == [0, 5, 2, 7]