1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
from itertools import product
import pytest
import torch
from torch_sparse.storage import SparseStorage
from torch_sparse.testing import devices, dtypes, tensor
@pytest.mark.parametrize('device', devices)
def test_ind2ptr(device):
row = tensor([2, 2, 4, 5, 5, 6], torch.long, device)
rowptr = torch.ops.torch_sparse.ind2ptr(row, 8)
assert rowptr.tolist() == [0, 0, 0, 2, 2, 3, 5, 6, 6]
row = torch.ops.torch_sparse.ptr2ind(rowptr, 6)
assert row.tolist() == [2, 2, 4, 5, 5, 6]
row = tensor([], torch.long, device)
rowptr = torch.ops.torch_sparse.ind2ptr(row, 8)
assert rowptr.tolist() == [0, 0, 0, 0, 0, 0, 0, 0, 0]
row = torch.ops.torch_sparse.ptr2ind(rowptr, 0)
assert row.tolist() == []
@pytest.mark.parametrize('dtype,device', product(dtypes, devices))
def test_storage(dtype, device):
row, col = tensor([[0, 0, 1, 1], [0, 1, 0, 1]], torch.long, device)
storage = SparseStorage(row=row, col=col)
assert storage.row().tolist() == [0, 0, 1, 1]
assert storage.col().tolist() == [0, 1, 0, 1]
assert storage.value() is None
assert storage.sparse_sizes() == (2, 2)
row, col = tensor([[0, 0, 1, 1], [1, 0, 1, 0]], torch.long, device)
value = tensor([2, 1, 4, 3], dtype, device)
storage = SparseStorage(row=row, col=col, value=value)
assert storage.row().tolist() == [0, 0, 1, 1]
assert storage.col().tolist() == [0, 1, 0, 1]
assert storage.value().tolist() == [1, 2, 3, 4]
assert storage.sparse_sizes() == (2, 2)
@pytest.mark.parametrize('dtype,device', product(dtypes, devices))
def test_caching(dtype, device):
row, col = tensor([[0, 0, 1, 1], [0, 1, 0, 1]], torch.long, device)
storage = SparseStorage(row=row, col=col)
assert storage._row.tolist() == row.tolist()
assert storage._col.tolist() == col.tolist()
assert storage._value is None
assert storage._rowcount is None
assert storage._rowptr is None
assert storage._colcount is None
assert storage._colptr is None
assert storage._csr2csc is None
assert storage.num_cached_keys() == 0
storage.fill_cache_()
assert storage._rowcount.tolist() == [2, 2]
assert storage._rowptr.tolist() == [0, 2, 4]
assert storage._colcount.tolist() == [2, 2]
assert storage._colptr.tolist() == [0, 2, 4]
assert storage._csr2csc.tolist() == [0, 2, 1, 3]
assert storage._csc2csr.tolist() == [0, 2, 1, 3]
assert storage.num_cached_keys() == 5
storage = SparseStorage(row=row, rowptr=storage._rowptr, col=col,
value=storage._value,
sparse_sizes=storage._sparse_sizes,
rowcount=storage._rowcount, colptr=storage._colptr,
colcount=storage._colcount,
csr2csc=storage._csr2csc, csc2csr=storage._csc2csr)
assert storage._rowcount.tolist() == [2, 2]
assert storage._rowptr.tolist() == [0, 2, 4]
assert storage._colcount.tolist() == [2, 2]
assert storage._colptr.tolist() == [0, 2, 4]
assert storage._csr2csc.tolist() == [0, 2, 1, 3]
assert storage._csc2csr.tolist() == [0, 2, 1, 3]
assert storage.num_cached_keys() == 5
storage.clear_cache_()
assert storage._rowcount is None
assert storage._rowptr is not None
assert storage._colcount is None
assert storage._colptr is None
assert storage._csr2csc is None
assert storage.num_cached_keys() == 0
@pytest.mark.parametrize('dtype,device', product(dtypes, devices))
def test_utility(dtype, device):
row, col = tensor([[0, 0, 1, 1], [1, 0, 1, 0]], torch.long, device)
value = tensor([1, 2, 3, 4], dtype, device)
storage = SparseStorage(row=row, col=col, value=value)
assert storage.has_value()
storage.set_value_(value, layout='csc')
assert storage.value().tolist() == [1, 3, 2, 4]
storage.set_value_(value, layout='coo')
assert storage.value().tolist() == [1, 2, 3, 4]
storage = storage.set_value(value, layout='csc')
assert storage.value().tolist() == [1, 3, 2, 4]
storage = storage.set_value(value, layout='coo')
assert storage.value().tolist() == [1, 2, 3, 4]
storage = storage.sparse_resize((3, 3))
assert storage.sparse_sizes() == (3, 3)
new_storage = storage.copy()
assert new_storage != storage
assert new_storage.col().data_ptr() == storage.col().data_ptr()
new_storage = storage.clone()
assert new_storage != storage
assert new_storage.col().data_ptr() != storage.col().data_ptr()
@pytest.mark.parametrize('dtype,device', product(dtypes, devices))
def test_coalesce(dtype, device):
row, col = tensor([[0, 0, 0, 1, 1], [0, 1, 1, 0, 1]], torch.long, device)
value = tensor([1, 1, 1, 3, 4], dtype, device)
storage = SparseStorage(row=row, col=col, value=value)
assert storage.row().tolist() == row.tolist()
assert storage.col().tolist() == col.tolist()
assert storage.value().tolist() == value.tolist()
assert not storage.is_coalesced()
storage = storage.coalesce()
assert storage.is_coalesced()
assert storage.row().tolist() == [0, 0, 1, 1]
assert storage.col().tolist() == [0, 1, 0, 1]
assert storage.value().tolist() == [1, 2, 3, 4]
@pytest.mark.parametrize('dtype,device', product(dtypes, devices))
def test_sparse_reshape(dtype, device):
row, col = tensor([[0, 1, 2, 3], [0, 1, 2, 3]], torch.long, device)
storage = SparseStorage(row=row, col=col)
storage = storage.sparse_reshape(2, 8)
assert storage.sparse_sizes() == (2, 8)
assert storage.row().tolist() == [0, 0, 1, 1]
assert storage.col().tolist() == [0, 5, 2, 7]
storage = storage.sparse_reshape(-1, 4)
assert storage.sparse_sizes() == (4, 4)
assert storage.row().tolist() == [0, 1, 2, 3]
assert storage.col().tolist() == [0, 1, 2, 3]
storage = storage.sparse_reshape(2, -1)
assert storage.sparse_sizes() == (2, 8)
assert storage.row().tolist() == [0, 0, 1, 1]
assert storage.col().tolist() == [0, 5, 2, 7]
|