1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
from typing import Optional, List, Tuple # noqa
import torch
from torch_sparse.storage import SparseStorage
from torch_sparse.tensor import SparseTensor
@torch.jit._overload # noqa: F811
def cat(tensors, dim): # noqa: F811
# type: (List[SparseTensor], int) -> SparseTensor
pass
@torch.jit._overload # noqa: F811
def cat(tensors, dim): # noqa: F811
# type: (List[SparseTensor], Tuple[int, int]) -> SparseTensor
pass
@torch.jit._overload # noqa: F811
def cat(tensors, dim): # noqa: F811
# type: (List[SparseTensor], List[int]) -> SparseTensor
pass
def cat(tensors, dim): # noqa: F811
assert len(tensors) > 0
if isinstance(dim, int):
dim = tensors[0].dim() + dim if dim < 0 else dim
if dim == 0:
return cat_first(tensors)
elif dim == 1:
return cat_second(tensors)
pass
elif dim > 1 and dim < tensors[0].dim():
values = []
for tensor in tensors:
value = tensor.storage.value()
assert value is not None
values.append(value)
value = torch.cat(values, dim=dim - 1)
return tensors[0].set_value(value, layout='coo')
else:
raise IndexError(
(f'Dimension out of range: Expected to be in range of '
f'[{-tensors[0].dim()}, {tensors[0].dim() - 1}], but got '
f'{dim}.'))
else:
assert isinstance(dim, (tuple, list))
assert len(dim) == 2
assert sorted(dim) == [0, 1]
return cat_diag(tensors)
def cat_first(tensors: List[SparseTensor]) -> SparseTensor:
rows: List[torch.Tensor] = []
rowptrs: List[torch.Tensor] = []
cols: List[torch.Tensor] = []
values: List[torch.Tensor] = []
sparse_sizes: List[int] = [0, 0]
rowcounts: List[torch.Tensor] = []
nnz: int = 0
for tensor in tensors:
row = tensor.storage._row
if row is not None:
rows.append(row + sparse_sizes[0])
rowptr = tensor.storage._rowptr
if rowptr is not None:
rowptrs.append(rowptr[1:] + nnz if len(rowptrs) > 0 else rowptr)
cols.append(tensor.storage._col)
value = tensor.storage._value
if value is not None:
values.append(value)
rowcount = tensor.storage._rowcount
if rowcount is not None:
rowcounts.append(rowcount)
sparse_sizes[0] += tensor.sparse_size(0)
sparse_sizes[1] = max(sparse_sizes[1], tensor.sparse_size(1))
nnz += tensor.nnz()
row: Optional[torch.Tensor] = None
if len(rows) == len(tensors):
row = torch.cat(rows, dim=0)
rowptr: Optional[torch.Tensor] = None
if len(rowptrs) == len(tensors):
rowptr = torch.cat(rowptrs, dim=0)
col = torch.cat(cols, dim=0)
value: Optional[torch.Tensor] = None
if len(values) == len(tensors):
value = torch.cat(values, dim=0)
rowcount: Optional[torch.Tensor] = None
if len(rowcounts) == len(tensors):
rowcount = torch.cat(rowcounts, dim=0)
storage = SparseStorage(row=row, rowptr=rowptr, col=col, value=value,
sparse_sizes=(sparse_sizes[0], sparse_sizes[1]),
rowcount=rowcount, colptr=None, colcount=None,
csr2csc=None, csc2csr=None, is_sorted=True)
return tensors[0].from_storage(storage)
def cat_second(tensors: List[SparseTensor]) -> SparseTensor:
rows: List[torch.Tensor] = []
cols: List[torch.Tensor] = []
values: List[torch.Tensor] = []
sparse_sizes: List[int] = [0, 0]
colptrs: List[torch.Tensor] = []
colcounts: List[torch.Tensor] = []
nnz: int = 0
for tensor in tensors:
row, col, value = tensor.coo()
rows.append(row)
cols.append(tensor.storage._col + sparse_sizes[1])
if value is not None:
values.append(value)
colptr = tensor.storage._colptr
if colptr is not None:
colptrs.append(colptr[1:] + nnz if len(colptrs) > 0 else colptr)
colcount = tensor.storage._colcount
if colcount is not None:
colcounts.append(colcount)
sparse_sizes[0] = max(sparse_sizes[0], tensor.sparse_size(0))
sparse_sizes[1] += tensor.sparse_size(1)
nnz += tensor.nnz()
row = torch.cat(rows, dim=0)
col = torch.cat(cols, dim=0)
value: Optional[torch.Tensor] = None
if len(values) == len(tensors):
value = torch.cat(values, dim=0)
colptr: Optional[torch.Tensor] = None
if len(colptrs) == len(tensors):
colptr = torch.cat(colptrs, dim=0)
colcount: Optional[torch.Tensor] = None
if len(colcounts) == len(tensors):
colcount = torch.cat(colcounts, dim=0)
storage = SparseStorage(row=row, rowptr=None, col=col, value=value,
sparse_sizes=(sparse_sizes[0], sparse_sizes[1]),
rowcount=None, colptr=colptr, colcount=colcount,
csr2csc=None, csc2csr=None, is_sorted=False)
return tensors[0].from_storage(storage)
def cat_diag(tensors: List[SparseTensor]) -> SparseTensor:
assert len(tensors) > 0
rows: List[torch.Tensor] = []
rowptrs: List[torch.Tensor] = []
cols: List[torch.Tensor] = []
values: List[torch.Tensor] = []
sparse_sizes: List[int] = [0, 0]
rowcounts: List[torch.Tensor] = []
colptrs: List[torch.Tensor] = []
colcounts: List[torch.Tensor] = []
csr2cscs: List[torch.Tensor] = []
csc2csrs: List[torch.Tensor] = []
nnz: int = 0
for tensor in tensors:
row = tensor.storage._row
if row is not None:
rows.append(row + sparse_sizes[0])
rowptr = tensor.storage._rowptr
if rowptr is not None:
rowptrs.append(rowptr[1:] + nnz if len(rowptrs) > 0 else rowptr)
cols.append(tensor.storage._col + sparse_sizes[1])
value = tensor.storage._value
if value is not None:
values.append(value)
rowcount = tensor.storage._rowcount
if rowcount is not None:
rowcounts.append(rowcount)
colptr = tensor.storage._colptr
if colptr is not None:
colptrs.append(colptr[1:] + nnz if len(colptrs) > 0 else colptr)
colcount = tensor.storage._colcount
if colcount is not None:
colcounts.append(colcount)
csr2csc = tensor.storage._csr2csc
if csr2csc is not None:
csr2cscs.append(csr2csc + nnz)
csc2csr = tensor.storage._csc2csr
if csc2csr is not None:
csc2csrs.append(csc2csr + nnz)
sparse_sizes[0] += tensor.sparse_size(0)
sparse_sizes[1] += tensor.sparse_size(1)
nnz += tensor.nnz()
row: Optional[torch.Tensor] = None
if len(rows) == len(tensors):
row = torch.cat(rows, dim=0)
rowptr: Optional[torch.Tensor] = None
if len(rowptrs) == len(tensors):
rowptr = torch.cat(rowptrs, dim=0)
col = torch.cat(cols, dim=0)
value: Optional[torch.Tensor] = None
if len(values) == len(tensors):
value = torch.cat(values, dim=0)
rowcount: Optional[torch.Tensor] = None
if len(rowcounts) == len(tensors):
rowcount = torch.cat(rowcounts, dim=0)
colptr: Optional[torch.Tensor] = None
if len(colptrs) == len(tensors):
colptr = torch.cat(colptrs, dim=0)
colcount: Optional[torch.Tensor] = None
if len(colcounts) == len(tensors):
colcount = torch.cat(colcounts, dim=0)
csr2csc: Optional[torch.Tensor] = None
if len(csr2cscs) == len(tensors):
csr2csc = torch.cat(csr2cscs, dim=0)
csc2csr: Optional[torch.Tensor] = None
if len(csc2csrs) == len(tensors):
csc2csr = torch.cat(csc2csrs, dim=0)
storage = SparseStorage(row=row, rowptr=rowptr, col=col, value=value,
sparse_sizes=(sparse_sizes[0], sparse_sizes[1]),
rowcount=rowcount, colptr=colptr,
colcount=colcount, csr2csc=csr2csc,
csc2csr=csc2csr, is_sorted=True)
return tensors[0].from_storage(storage)
|