File: mul.py

package info (click to toggle)
pytorch-sparse 0.6.18-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 984 kB
  • sloc: python: 3,646; cpp: 2,444; sh: 54; makefile: 6
file content (136 lines) | stat: -rw-r--r-- 4,070 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from typing import Optional

import torch
from torch import Tensor
from torch_scatter import gather_csr

from torch_sparse.tensor import SparseTensor


@torch.jit._overload  # noqa: F811
def mul(src, other):  # noqa: F811
    # type: (SparseTensor, Tensor) -> SparseTensor
    pass


@torch.jit._overload  # noqa: F811
def mul(src, other):  # noqa: F811
    # type: (SparseTensor, SparseTensor) -> SparseTensor
    pass


def mul(src, other):  # noqa: F811
    if isinstance(other, Tensor):
        rowptr, col, value = src.csr()
        if other.size(0) == src.size(0) and other.size(1) == 1:  # Row-wise...
            other = gather_csr(other.squeeze(1), rowptr)
            pass
        # Col-wise...
        elif other.size(0) == 1 and other.size(1) == src.size(1):
            other = other.squeeze(0)[col]
        else:
            raise ValueError(
                f'Size mismatch: Expected size ({src.size(0)}, 1, ...) or '
                f'(1, {src.size(1)}, ...), but got size {other.size()}.')

        if value is not None:
            value = other.to(value.dtype).mul_(value)
        else:
            value = other
        return src.set_value(value, layout='coo')

    assert isinstance(other, SparseTensor)

    if not src.is_coalesced():
        raise ValueError("The `src` tensor is not coalesced")
    if not other.is_coalesced():
        raise ValueError("The `other` tensor is not coalesced")

    rowA, colA, valueA = src.coo()
    rowB, colB, valueB = other.coo()

    row = torch.cat([rowA, rowB], dim=0)
    col = torch.cat([colA, colB], dim=0)

    if valueA is not None and valueB is not None:
        value = torch.cat([valueA, valueB], dim=0)
    else:
        raise ValueError('Both sparse tensors must contain values')

    M = max(src.size(0), other.size(0))
    N = max(src.size(1), other.size(1))
    sparse_sizes = (M, N)

    # Sort indices:
    idx = col.new_full((col.numel() + 1, ), -1)
    idx[1:] = row * sparse_sizes[1] + col
    perm = idx[1:].argsort()
    idx[1:] = idx[1:][perm]

    row, col, value = row[perm], col[perm], value[perm]

    valid_mask = idx[1:] == idx[:-1]
    valid_idx = valid_mask.nonzero().view(-1)

    return SparseTensor(
        row=row[valid_mask],
        col=col[valid_mask],
        value=value[valid_idx - 1] * value[valid_idx],
        sparse_sizes=sparse_sizes,
    )


def mul_(src: SparseTensor, other: torch.Tensor) -> SparseTensor:
    rowptr, col, value = src.csr()
    if other.size(0) == src.size(0) and other.size(1) == 1:  # Row-wise...
        other = gather_csr(other.squeeze(1), rowptr)
        pass
    elif other.size(0) == 1 and other.size(1) == src.size(1):  # Col-wise...
        other = other.squeeze(0)[col]
    else:
        raise ValueError(
            f'Size mismatch: Expected size ({src.size(0)}, 1, ...) or '
            f'(1, {src.size(1)}, ...), but got size {other.size()}.')

    if value is not None:
        value = value.mul_(other.to(value.dtype))
    else:
        value = other
    return src.set_value_(value, layout='coo')


def mul_nnz(
    src: SparseTensor,
    other: torch.Tensor,
    layout: Optional[str] = None,
) -> SparseTensor:
    value = src.storage.value()
    if value is not None:
        value = value.mul(other.to(value.dtype))
    else:
        value = other
    return src.set_value(value, layout=layout)


def mul_nnz_(
    src: SparseTensor,
    other: torch.Tensor,
    layout: Optional[str] = None,
) -> SparseTensor:
    value = src.storage.value()
    if value is not None:
        value = value.mul_(other.to(value.dtype))
    else:
        value = other
    return src.set_value_(value, layout=layout)


SparseTensor.mul = lambda self, other: mul(self, other)
SparseTensor.mul_ = lambda self, other: mul_(self, other)
SparseTensor.mul_nnz = lambda self, other, layout=None: mul_nnz(
    self, other, layout)
SparseTensor.mul_nnz_ = lambda self, other, layout=None: mul_nnz_(
    self, other, layout)
SparseTensor.__mul__ = SparseTensor.mul
SparseTensor.__rmul__ = SparseTensor.mul
SparseTensor.__imul__ = SparseTensor.mul_