1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
|
import warnings
from typing import List, Optional, Tuple
import torch
from torch_scatter import scatter_add, segment_csr
from torch_sparse.utils import Final, index_sort
layouts: Final[List[str]] = ['coo', 'csr', 'csc']
def get_layout(layout: Optional[str] = None) -> str:
if layout is None:
layout = 'coo'
warnings.warn('`layout` argument unset, using default layout '
'"coo". This may lead to unexpected behaviour.')
assert layout == 'coo' or layout == 'csr' or layout == 'csc'
return layout
@torch.jit.script
class SparseStorage(object):
_row: Optional[torch.Tensor]
_rowptr: Optional[torch.Tensor]
_col: torch.Tensor
_value: Optional[torch.Tensor]
_sparse_sizes: Tuple[int, int]
_rowcount: Optional[torch.Tensor]
_colptr: Optional[torch.Tensor]
_colcount: Optional[torch.Tensor]
_csr2csc: Optional[torch.Tensor]
_csc2csr: Optional[torch.Tensor]
def __init__(
self,
row: Optional[torch.Tensor] = None,
rowptr: Optional[torch.Tensor] = None,
col: Optional[torch.Tensor] = None,
value: Optional[torch.Tensor] = None,
sparse_sizes: Optional[Tuple[Optional[int], Optional[int]]] = None,
rowcount: Optional[torch.Tensor] = None,
colptr: Optional[torch.Tensor] = None,
colcount: Optional[torch.Tensor] = None,
csr2csc: Optional[torch.Tensor] = None,
csc2csr: Optional[torch.Tensor] = None,
is_sorted: bool = False,
trust_data: bool = False,
):
assert row is not None or rowptr is not None
assert col is not None
assert col.dtype == torch.long
assert col.dim() == 1
col = col.contiguous()
M: int = 0
if sparse_sizes is None or sparse_sizes[0] is None:
if rowptr is not None:
M = rowptr.numel() - 1
elif row is not None and row.numel() > 0:
M = int(row.max()) + 1
else:
_M = sparse_sizes[0]
assert _M is not None
M = _M
if rowptr is not None:
assert rowptr.numel() - 1 == M
elif row is not None and row.numel() > 0:
assert trust_data or int(row.max()) < M
N: int = 0
if sparse_sizes is None or sparse_sizes[1] is None:
if col.numel() > 0:
N = int(col.max()) + 1
else:
_N = sparse_sizes[1]
assert _N is not None
N = _N
if col.numel() > 0:
assert trust_data or int(col.max()) < N
sparse_sizes = (M, N)
if row is not None:
assert row.dtype == torch.long
assert row.device == col.device
assert row.dim() == 1
assert row.numel() == col.numel()
row = row.contiguous()
if rowptr is not None:
assert rowptr.dtype == torch.long
assert rowptr.device == col.device
assert rowptr.dim() == 1
assert rowptr.numel() - 1 == sparse_sizes[0]
rowptr = rowptr.contiguous()
if value is not None:
assert value.device == col.device
assert value.size(0) == col.size(0)
value = value.contiguous()
if rowcount is not None:
assert rowcount.dtype == torch.long
assert rowcount.device == col.device
assert rowcount.dim() == 1
assert rowcount.numel() == sparse_sizes[0]
rowcount = rowcount.contiguous()
if colptr is not None:
assert colptr.dtype == torch.long
assert colptr.device == col.device
assert colptr.dim() == 1
assert colptr.numel() - 1 == sparse_sizes[1]
colptr = colptr.contiguous()
if colcount is not None:
assert colcount.dtype == torch.long
assert colcount.device == col.device
assert colcount.dim() == 1
assert colcount.numel() == sparse_sizes[1]
colcount = colcount.contiguous()
if csr2csc is not None:
assert csr2csc.dtype == torch.long
assert csr2csc.device == col.device
assert csr2csc.dim() == 1
assert csr2csc.numel() == col.size(0)
csr2csc = csr2csc.contiguous()
if csc2csr is not None:
assert csc2csr.dtype == torch.long
assert csc2csr.device == col.device
assert csc2csr.dim() == 1
assert csc2csr.numel() == col.size(0)
csc2csr = csc2csr.contiguous()
self._row = row
self._rowptr = rowptr
self._col = col
self._value = value
self._sparse_sizes = tuple(sparse_sizes)
self._rowcount = rowcount
self._colptr = colptr
self._colcount = colcount
self._csr2csc = csr2csc
self._csc2csr = csc2csr
if not is_sorted and self._col.numel() > 0:
idx = self._col.new_zeros(self._col.numel() + 1)
idx[1:] = self.row()
idx[1:] *= self._sparse_sizes[1]
idx[1:] += self._col
if (idx[1:] < idx[:-1]).any():
max_value = self._sparse_sizes[0] * self._sparse_sizes[1]
_, perm = index_sort(idx[1:], max_value)
self._row = self.row()[perm]
self._col = self._col[perm]
if value is not None:
self._value = value[perm]
self._csr2csc = None
self._csc2csr = None
@classmethod
def empty(self):
row = torch.tensor([], dtype=torch.long)
col = torch.tensor([], dtype=torch.long)
return SparseStorage(
row=row,
rowptr=None,
col=col,
value=None,
sparse_sizes=(0, 0),
rowcount=None,
colptr=None,
colcount=None,
csr2csc=None,
csc2csr=None,
is_sorted=True,
trust_data=True,
)
def has_row(self) -> bool:
return self._row is not None
def row(self):
row = self._row
if row is not None:
return row
rowptr = self._rowptr
if rowptr is not None:
row = torch.ops.torch_sparse.ptr2ind(rowptr, self._col.numel())
self._row = row
return row
raise ValueError
def has_rowptr(self) -> bool:
return self._rowptr is not None
def rowptr(self) -> torch.Tensor:
rowptr = self._rowptr
if rowptr is not None:
return rowptr
row = self._row
if row is not None:
rowptr = torch.ops.torch_sparse.ind2ptr(row, self._sparse_sizes[0])
self._rowptr = rowptr
return rowptr
raise ValueError
def col(self) -> torch.Tensor:
return self._col
def has_value(self) -> bool:
return self._value is not None
def value(self) -> Optional[torch.Tensor]:
return self._value
def set_value_(
self,
value: Optional[torch.Tensor],
layout: Optional[str] = None,
):
if value is not None:
if get_layout(layout) == 'csc':
value = value[self.csc2csr()]
value = value.contiguous()
assert value.device == self._col.device
assert value.size(0) == self._col.numel()
self._value = value
return self
def set_value(
self,
value: Optional[torch.Tensor],
layout: Optional[str] = None,
):
if value is not None:
if get_layout(layout) == 'csc':
value = value[self.csc2csr()]
value = value.contiguous()
assert value.device == self._col.device
assert value.size(0) == self._col.numel()
return SparseStorage(
row=self._row,
rowptr=self._rowptr,
col=self._col,
value=value,
sparse_sizes=self._sparse_sizes,
rowcount=self._rowcount,
colptr=self._colptr,
colcount=self._colcount,
csr2csc=self._csr2csc,
csc2csr=self._csc2csr,
is_sorted=True,
trust_data=True,
)
def sparse_sizes(self) -> Tuple[int, int]:
return self._sparse_sizes
def sparse_size(self, dim: int) -> int:
return self._sparse_sizes[dim]
def sparse_resize(self, sparse_sizes: Tuple[int, int]):
assert len(sparse_sizes) == 2
old_sparse_sizes, nnz = self._sparse_sizes, self._col.numel()
diff_0 = sparse_sizes[0] - old_sparse_sizes[0]
rowcount, rowptr = self._rowcount, self._rowptr
if diff_0 > 0:
if rowptr is not None:
rowptr = torch.cat([rowptr, rowptr.new_full((diff_0, ), nnz)])
if rowcount is not None:
rowcount = torch.cat([rowcount, rowcount.new_zeros(diff_0)])
elif diff_0 < 0:
if rowptr is not None:
rowptr = rowptr[:diff_0]
if rowcount is not None:
rowcount = rowcount[:diff_0]
diff_1 = sparse_sizes[1] - old_sparse_sizes[1]
colcount, colptr = self._colcount, self._colptr
if diff_1 > 0:
if colptr is not None:
colptr = torch.cat([colptr, colptr.new_full((diff_1, ), nnz)])
if colcount is not None:
colcount = torch.cat([colcount, colcount.new_zeros(diff_1)])
elif diff_1 < 0:
if colptr is not None:
colptr = colptr[:diff_1]
if colcount is not None:
colcount = colcount[:diff_1]
return SparseStorage(
row=self._row,
rowptr=rowptr,
col=self._col,
value=self._value,
sparse_sizes=sparse_sizes,
rowcount=rowcount,
colptr=colptr,
colcount=colcount,
csr2csc=self._csr2csc,
csc2csr=self._csc2csr,
is_sorted=True,
trust_data=True,
)
def sparse_reshape(self, num_rows: int, num_cols: int):
assert num_rows > 0 or num_rows == -1
assert num_cols > 0 or num_cols == -1
assert num_rows > 0 or num_cols > 0
total = self.sparse_size(0) * self.sparse_size(1)
if num_rows == -1:
num_rows = total // num_cols
if num_cols == -1:
num_cols = total // num_rows
assert num_rows * num_cols == total
idx = self.sparse_size(1) * self.row() + self.col()
row = torch.div(idx, num_cols, rounding_mode='floor')
col = idx % num_cols
assert row.dtype == torch.long and col.dtype == torch.long
return SparseStorage(
row=row,
rowptr=None,
col=col,
value=self._value,
sparse_sizes=(num_rows, num_cols),
rowcount=None,
colptr=None,
colcount=None,
csr2csc=None,
csc2csr=None,
is_sorted=True,
trust_data=True,
)
def has_rowcount(self) -> bool:
return self._rowcount is not None
def rowcount(self) -> torch.Tensor:
rowcount = self._rowcount
if rowcount is not None:
return rowcount
rowptr = self.rowptr()
rowcount = rowptr[1:] - rowptr[:-1]
self._rowcount = rowcount
return rowcount
def has_colptr(self) -> bool:
return self._colptr is not None
def colptr(self) -> torch.Tensor:
colptr = self._colptr
if colptr is not None:
return colptr
csr2csc = self._csr2csc
if csr2csc is not None:
colptr = torch.ops.torch_sparse.ind2ptr(self._col[csr2csc],
self._sparse_sizes[1])
else:
colptr = self._col.new_zeros(self._sparse_sizes[1] + 1)
torch.cumsum(self.colcount(), dim=0, out=colptr[1:])
self._colptr = colptr
return colptr
def has_colcount(self) -> bool:
return self._colcount is not None
def colcount(self) -> torch.Tensor:
colcount = self._colcount
if colcount is not None:
return colcount
colptr = self._colptr
if colptr is not None:
colcount = colptr[1:] - colptr[:-1]
else:
colcount = scatter_add(
torch.ones_like(self._col),
self._col,
dim_size=self._sparse_sizes[1],
)
self._colcount = colcount
return colcount
def has_csr2csc(self) -> bool:
return self._csr2csc is not None
def csr2csc(self) -> torch.Tensor:
csr2csc = self._csr2csc
if csr2csc is not None:
return csr2csc
idx = self._sparse_sizes[0] * self._col + self.row()
max_value = self._sparse_sizes[0] * self._sparse_sizes[1]
_, csr2csc = index_sort(idx, max_value)
self._csr2csc = csr2csc
return csr2csc
def has_csc2csr(self) -> bool:
return self._csc2csr is not None
def csc2csr(self) -> torch.Tensor:
csc2csr = self._csc2csr
if csc2csr is not None:
return csc2csr
max_value = self._sparse_sizes[0] * self._sparse_sizes[1]
_, csc2csr = index_sort(self.csr2csc(), max_value)
self._csc2csr = csc2csr
return csc2csr
def is_coalesced(self) -> bool:
idx = self._col.new_full((self._col.numel() + 1, ), -1)
idx[1:] = self._sparse_sizes[1] * self.row() + self._col
return bool((idx[1:] > idx[:-1]).all())
def coalesce(self, reduce: str = "add"):
idx = self._col.new_full((self._col.numel() + 1, ), -1)
idx[1:] = self._sparse_sizes[1] * self.row() + self._col
mask = idx[1:] > idx[:-1]
if mask.all(): # Skip if indices are already coalesced.
return self
row = self.row()[mask]
col = self._col[mask]
value = self._value
if value is not None:
ptr = mask.nonzero().flatten()
ptr = torch.cat([ptr, ptr.new_full((1, ), value.size(0))])
value = segment_csr(value, ptr, reduce=reduce)
return SparseStorage(
row=row,
rowptr=None,
col=col,
value=value,
sparse_sizes=self._sparse_sizes,
rowcount=None,
colptr=None,
colcount=None,
csr2csc=None,
csc2csr=None,
is_sorted=True,
trust_data=True,
)
def fill_cache_(self):
self.row()
self.rowptr()
self.rowcount()
self.colptr()
self.colcount()
self.csr2csc()
self.csc2csr()
return self
def clear_cache_(self):
self._rowcount = None
self._colptr = None
self._colcount = None
self._csr2csc = None
self._csc2csr = None
return self
def cached_keys(self) -> List[str]:
keys: List[str] = []
if self.has_rowcount():
keys.append('rowcount')
if self.has_colptr():
keys.append('colptr')
if self.has_colcount():
keys.append('colcount')
if self.has_csr2csc():
keys.append('csr2csc')
if self.has_csc2csr():
keys.append('csc2csr')
return keys
def num_cached_keys(self) -> int:
return len(self.cached_keys())
def copy(self):
return SparseStorage(
row=self._row,
rowptr=self._rowptr,
col=self._col,
value=self._value,
sparse_sizes=self._sparse_sizes,
rowcount=self._rowcount,
colptr=self._colptr,
colcount=self._colcount,
csr2csc=self._csr2csc,
csc2csr=self._csc2csr,
is_sorted=True,
trust_data=True,
)
def clone(self):
row = self._row
if row is not None:
row = row.clone()
rowptr = self._rowptr
if rowptr is not None:
rowptr = rowptr.clone()
col = self._col.clone()
value = self._value
if value is not None:
value = value.clone()
rowcount = self._rowcount
if rowcount is not None:
rowcount = rowcount.clone()
colptr = self._colptr
if colptr is not None:
colptr = colptr.clone()
colcount = self._colcount
if colcount is not None:
colcount = colcount.clone()
csr2csc = self._csr2csc
if csr2csc is not None:
csr2csc = csr2csc.clone()
csc2csr = self._csc2csr
if csc2csr is not None:
csc2csr = csc2csr.clone()
return SparseStorage(
row=row,
rowptr=rowptr,
col=col,
value=value,
sparse_sizes=self._sparse_sizes,
rowcount=rowcount,
colptr=colptr,
colcount=colcount,
csr2csc=csr2csc,
csc2csr=csc2csr,
is_sorted=True,
trust_data=True,
)
def type(self, dtype: torch.dtype, non_blocking: bool = False):
value = self._value
if value is not None:
if dtype == value.dtype:
return self
else:
return self.set_value(
value.to(dtype=dtype, non_blocking=non_blocking),
layout='coo',
)
else:
return self
def type_as(self, tensor: torch.Tensor, non_blocking: bool = False):
return self.type(dtype=tensor.dtype, non_blocking=non_blocking)
def to_device(self, device: torch.device, non_blocking: bool = False):
if device == self._col.device:
return self
row = self._row
if row is not None:
row = row.to(device, non_blocking=non_blocking)
rowptr = self._rowptr
if rowptr is not None:
rowptr = rowptr.to(device, non_blocking=non_blocking)
col = self._col.to(device, non_blocking=non_blocking)
value = self._value
if value is not None:
value = value.to(device, non_blocking=non_blocking)
rowcount = self._rowcount
if rowcount is not None:
rowcount = rowcount.to(device, non_blocking=non_blocking)
colptr = self._colptr
if colptr is not None:
colptr = colptr.to(device, non_blocking=non_blocking)
colcount = self._colcount
if colcount is not None:
colcount = colcount.to(device, non_blocking=non_blocking)
csr2csc = self._csr2csc
if csr2csc is not None:
csr2csc = csr2csc.to(device, non_blocking=non_blocking)
csc2csr = self._csc2csr
if csc2csr is not None:
csc2csr = csc2csr.to(device, non_blocking=non_blocking)
return SparseStorage(
row=row,
rowptr=rowptr,
col=col,
value=value,
sparse_sizes=self._sparse_sizes,
rowcount=rowcount,
colptr=colptr,
colcount=colcount,
csr2csc=csr2csc,
csc2csr=csc2csr,
is_sorted=True,
trust_data=True,
)
def device_as(self, tensor: torch.Tensor, non_blocking: bool = False):
return self.to_device(device=tensor.device, non_blocking=non_blocking)
def cuda(self):
new_col = self._col.cuda()
if new_col.device == self._col.device:
return self
row = self._row
if row is not None:
row = row.cuda()
rowptr = self._rowptr
if rowptr is not None:
rowptr = rowptr.cuda()
value = self._value
if value is not None:
value = value.cuda()
rowcount = self._rowcount
if rowcount is not None:
rowcount = rowcount.cuda()
colptr = self._colptr
if colptr is not None:
colptr = colptr.cuda()
colcount = self._colcount
if colcount is not None:
colcount = colcount.cuda()
csr2csc = self._csr2csc
if csr2csc is not None:
csr2csc = csr2csc.cuda()
csc2csr = self._csc2csr
if csc2csr is not None:
csc2csr = csc2csr.cuda()
return SparseStorage(
row=row,
rowptr=rowptr,
col=new_col,
value=value,
sparse_sizes=self._sparse_sizes,
rowcount=rowcount,
colptr=colptr,
colcount=colcount,
csr2csc=csr2csc,
csc2csr=csc2csr,
is_sorted=True,
trust_data=True,
)
def pin_memory(self):
row = self._row
if row is not None:
row = row.pin_memory()
rowptr = self._rowptr
if rowptr is not None:
rowptr = rowptr.pin_memory()
col = self._col.pin_memory()
value = self._value
if value is not None:
value = value.pin_memory()
rowcount = self._rowcount
if rowcount is not None:
rowcount = rowcount.pin_memory()
colptr = self._colptr
if colptr is not None:
colptr = colptr.pin_memory()
colcount = self._colcount
if colcount is not None:
colcount = colcount.pin_memory()
csr2csc = self._csr2csc
if csr2csc is not None:
csr2csc = csr2csc.pin_memory()
csc2csr = self._csc2csr
if csc2csr is not None:
csc2csr = csc2csr.pin_memory()
return SparseStorage(
row=row,
rowptr=rowptr,
col=col,
value=value,
sparse_sizes=self._sparse_sizes,
rowcount=rowcount,
colptr=colptr,
colcount=colcount,
csr2csc=csr2csc,
csc2csr=csc2csr,
is_sorted=True,
trust_data=True,
)
def is_pinned(self) -> bool:
is_pinned = True
row = self._row
if row is not None:
is_pinned = is_pinned and row.is_pinned()
rowptr = self._rowptr
if rowptr is not None:
is_pinned = is_pinned and rowptr.is_pinned()
is_pinned = self._col.is_pinned()
value = self._value
if value is not None:
is_pinned = is_pinned and value.is_pinned()
rowcount = self._rowcount
if rowcount is not None:
is_pinned = is_pinned and rowcount.is_pinned()
colptr = self._colptr
if colptr is not None:
is_pinned = is_pinned and colptr.is_pinned()
colcount = self._colcount
if colcount is not None:
is_pinned = is_pinned and colcount.is_pinned()
csr2csc = self._csr2csc
if csr2csc is not None:
is_pinned = is_pinned and csr2csc.is_pinned()
csc2csr = self._csc2csr
if csc2csr is not None:
is_pinned = is_pinned and csc2csr.is_pinned()
return is_pinned
def share_memory_(self) -> SparseStorage:
row = self._row
if row is not None:
row.share_memory_()
rowptr = self._rowptr
if rowptr is not None:
rowptr.share_memory_()
self._col.share_memory_()
value = self._value
if value is not None:
value.share_memory_()
rowcount = self._rowcount
if rowcount is not None:
rowcount.share_memory_()
colptr = self._colptr
if colptr is not None:
colptr.share_memory_()
colcount = self._colcount
if colcount is not None:
colcount.share_memory_()
csr2csc = self._csr2csc
if csr2csc is not None:
csr2csc.share_memory_()
csc2csr = self._csc2csr
if csc2csr is not None:
csc2csr.share_memory_()
def is_shared(self) -> bool:
is_shared = True
row = self._row
if row is not None:
is_shared = is_shared and row.is_shared()
rowptr = self._rowptr
if rowptr is not None:
is_shared = is_shared and rowptr.is_shared()
is_shared = is_shared and self._col.is_shared()
value = self._value
if value is not None:
is_shared = is_shared and value.is_shared()
rowcount = self._rowcount
if rowcount is not None:
is_shared = is_shared and rowcount.is_shared()
colptr = self._colptr
if colptr is not None:
is_shared = is_shared and colptr.is_shared()
colcount = self._colcount
if colcount is not None:
is_shared = is_shared and colcount.is_shared()
csr2csc = self._csr2csc
if csr2csc is not None:
is_shared = is_shared and csr2csc.is_shared()
csc2csr = self._csc2csr
if csc2csr is not None:
is_shared = is_shared and csc2csr.is_shared()
return is_shared
SparseStorage.share_memory_ = share_memory_
SparseStorage.is_shared = is_shared
|