File: tensor.py

package info (click to toggle)
pytorch-sparse 0.6.18-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 984 kB
  • sloc: python: 3,646; cpp: 2,444; sh: 54; makefile: 6
file content (775 lines) | stat: -rw-r--r-- 23,123 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
from textwrap import indent
from typing import Any, Dict, List, Optional, Tuple, Union

import numpy as np
import scipy.sparse
import torch
from torch_scatter import segment_csr

from torch_sparse.storage import SparseStorage, get_layout


@torch.jit.script
class SparseTensor(object):
    storage: SparseStorage

    def __init__(
        self,
        row: Optional[torch.Tensor] = None,
        rowptr: Optional[torch.Tensor] = None,
        col: Optional[torch.Tensor] = None,
        value: Optional[torch.Tensor] = None,
        sparse_sizes: Optional[Tuple[Optional[int], Optional[int]]] = None,
        is_sorted: bool = False,
        trust_data: bool = False,
    ):
        self.storage = SparseStorage(
            row=row,
            rowptr=rowptr,
            col=col,
            value=value,
            sparse_sizes=sparse_sizes,
            rowcount=None,
            colptr=None,
            colcount=None,
            csr2csc=None,
            csc2csr=None,
            is_sorted=is_sorted,
            trust_data=trust_data,
        )

    @classmethod
    def from_storage(self, storage: SparseStorage):
        out = SparseTensor(
            row=storage._row,
            rowptr=storage._rowptr,
            col=storage._col,
            value=storage._value,
            sparse_sizes=storage._sparse_sizes,
            is_sorted=True,
            trust_data=True,
        )
        out.storage._rowcount = storage._rowcount
        out.storage._colptr = storage._colptr
        out.storage._colcount = storage._colcount
        out.storage._csr2csc = storage._csr2csc
        out.storage._csc2csr = storage._csc2csr
        return out

    @classmethod
    def from_edge_index(
        self,
        edge_index: torch.Tensor,
        edge_attr: Optional[torch.Tensor] = None,
        sparse_sizes: Optional[Tuple[Optional[int], Optional[int]]] = None,
        is_sorted: bool = False,
        trust_data: bool = False,
    ):
        return SparseTensor(
            row=edge_index[0],
            rowptr=None,
            col=edge_index[1],
            value=edge_attr,
            sparse_sizes=sparse_sizes,
            is_sorted=is_sorted,
            trust_data=trust_data,
        )

    @classmethod
    def from_dense(self, mat: torch.Tensor, has_value: bool = True):
        if mat.dim() > 2:
            index = mat.abs().sum([i for i in range(2, mat.dim())]).nonzero()
        else:
            index = mat.nonzero()
        index = index.t()

        row = index[0]
        col = index[1]

        value: Optional[torch.Tensor] = None
        if has_value:
            value = mat[row, col]

        return SparseTensor(
            row=row,
            rowptr=None,
            col=col,
            value=value,
            sparse_sizes=(mat.size(0), mat.size(1)),
            is_sorted=True,
            trust_data=True,
        )

    @classmethod
    def from_torch_sparse_coo_tensor(
        self,
        mat: torch.Tensor,
        has_value: bool = True,
    ):
        mat = mat.coalesce()
        index = mat._indices()
        row, col = index[0], index[1]

        value: Optional[torch.Tensor] = None
        if has_value:
            value = mat.values()

        return SparseTensor(
            row=row,
            rowptr=None,
            col=col,
            value=value,
            sparse_sizes=(mat.size(0), mat.size(1)),
            is_sorted=True,
            trust_data=True,
        )

    @classmethod
    def from_torch_sparse_csr_tensor(
        self,
        mat: torch.Tensor,
        has_value: bool = True,
    ):
        rowptr = mat.crow_indices()
        col = mat.col_indices()

        value: Optional[torch.Tensor] = None
        if has_value:
            value = mat.values()

        return SparseTensor(
            row=None,
            rowptr=rowptr,
            col=col,
            value=value,
            sparse_sizes=(mat.size(0), mat.size(1)),
            is_sorted=True,
            trust_data=True,
        )

    @classmethod
    def eye(self,
            M: int,
            N: Optional[int] = None,
            has_value: bool = True,
            dtype: Optional[int] = None,
            device: Optional[torch.device] = None,
            fill_cache: bool = False):

        N = M if N is None else N

        row = torch.arange(min(M, N), device=device)
        col = row

        rowptr = torch.arange(M + 1, device=row.device)
        if M > N:
            rowptr[N + 1:] = N

        value: Optional[torch.Tensor] = None
        if has_value:
            value = torch.ones(row.numel(), dtype=dtype, device=row.device)

        rowcount: Optional[torch.Tensor] = None
        colptr: Optional[torch.Tensor] = None
        colcount: Optional[torch.Tensor] = None
        csr2csc: Optional[torch.Tensor] = None
        csc2csr: Optional[torch.Tensor] = None

        if fill_cache:
            rowcount = torch.ones(M, dtype=torch.long, device=row.device)
            if M > N:
                rowcount[N:] = 0

            colptr = torch.arange(N + 1, dtype=torch.long, device=row.device)
            colcount = torch.ones(N, dtype=torch.long, device=row.device)
            if N > M:
                colptr[M + 1:] = M
                colcount[M:] = 0
            csr2csc = csc2csr = row

        out = SparseTensor(
            row=row,
            rowptr=rowptr,
            col=col,
            value=value,
            sparse_sizes=(M, N),
            is_sorted=True,
            trust_data=True,
        )
        out.storage._rowcount = rowcount
        out.storage._colptr = colptr
        out.storage._colcount = colcount
        out.storage._csr2csc = csr2csc
        out.storage._csc2csr = csc2csr
        return out

    def copy(self):
        return self.from_storage(self.storage)

    def clone(self):
        return self.from_storage(self.storage.clone())

    def type(self, dtype: torch.dtype, non_blocking: bool = False):
        value = self.storage.value()
        if value is None or dtype == value.dtype:
            return self
        return self.from_storage(
            self.storage.type(dtype=dtype, non_blocking=non_blocking))

    def type_as(self, tensor: torch.Tensor, non_blocking: bool = False):
        return self.type(dtype=tensor.dtype, non_blocking=non_blocking)

    def to_device(self, device: torch.device, non_blocking: bool = False):
        if device == self.device():
            return self
        return self.from_storage(
            self.storage.to_device(device=device, non_blocking=non_blocking))

    def device_as(self, tensor: torch.Tensor, non_blocking: bool = False):
        return self.to_device(device=tensor.device, non_blocking=non_blocking)

    # Formats #################################################################

    def coo(self) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        return self.storage.row(), self.storage.col(), self.storage.value()

    def csr(self) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        return self.storage.rowptr(), self.storage.col(), self.storage.value()

    def csc(self) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        perm = self.storage.csr2csc()
        value = self.storage.value()
        if value is not None:
            value = value[perm]
        return self.storage.colptr(), self.storage.row()[perm], value

    # Storage inheritance #####################################################

    def has_value(self) -> bool:
        return self.storage.has_value()

    def set_value_(
        self,
        value: Optional[torch.Tensor],
        layout: Optional[str] = None,
    ):
        self.storage.set_value_(value, layout)
        return self

    def set_value(
        self,
        value: Optional[torch.Tensor],
        layout: Optional[str] = None,
    ):
        return self.from_storage(self.storage.set_value(value, layout))

    def sparse_sizes(self) -> Tuple[int, int]:
        return self.storage.sparse_sizes()

    def sparse_size(self, dim: int) -> int:
        return self.storage.sparse_sizes()[dim]

    def sparse_resize(self, sparse_sizes: Tuple[int, int]):
        return self.from_storage(self.storage.sparse_resize(sparse_sizes))

    def sparse_reshape(self, num_rows: int, num_cols: int):
        return self.from_storage(
            self.storage.sparse_reshape(num_rows, num_cols))

    def is_coalesced(self) -> bool:
        return self.storage.is_coalesced()

    def coalesce(self, reduce: str = "sum"):
        return self.from_storage(self.storage.coalesce(reduce))

    def fill_cache_(self):
        self.storage.fill_cache_()
        return self

    def clear_cache_(self):
        self.storage.clear_cache_()
        return self

    def __eq__(self, other) -> bool:
        if not isinstance(other, self.__class__):
            return False

        if self.sizes() != other.sizes():
            return False

        rowptrA, colA, valueA = self.csr()
        rowptrB, colB, valueB = other.csr()

        if valueA is None and valueB is not None:
            return False
        if valueA is not None and valueB is None:
            return False
        if not torch.equal(rowptrA, rowptrB):
            return False
        if not torch.equal(colA, colB):
            return False
        if valueA is None and valueB is None:
            return True
        return torch.equal(valueA, valueB)

    # Utility functions #######################################################

    def fill_value_(self, fill_value: float, dtype: Optional[int] = None):
        value = torch.full(
            (self.nnz(), ),
            fill_value,
            dtype=dtype,
            device=self.device(),
        )
        return self.set_value_(value, layout='coo')

    def fill_value(self, fill_value: float, dtype: Optional[int] = None):
        value = torch.full(
            (self.nnz(), ),
            fill_value,
            dtype=dtype,
            device=self.device(),
        )
        return self.set_value(value, layout='coo')

    def sizes(self) -> List[int]:
        sparse_sizes = self.sparse_sizes()
        value = self.storage.value()
        if value is not None:
            return list(sparse_sizes) + list(value.size())[1:]
        else:
            return list(sparse_sizes)

    def size(self, dim: int) -> int:
        return self.sizes()[dim]

    def dim(self) -> int:
        return len(self.sizes())

    def nnz(self) -> int:
        return self.storage.col().numel()

    def numel(self) -> int:
        value = self.storage.value()
        if value is not None:
            return value.numel()
        else:
            return self.nnz()

    def density(self) -> float:
        if self.sparse_size(0) == 0 or self.sparse_size(1) == 0:
            return 0.0
        return self.nnz() / (self.sparse_size(0) * self.sparse_size(1))

    def sparsity(self) -> float:
        return 1 - self.density()

    def avg_row_length(self) -> float:
        return self.nnz() / self.sparse_size(0)

    def avg_col_length(self) -> float:
        return self.nnz() / self.sparse_size(1)

    def bandwidth(self) -> int:
        row, col, _ = self.coo()
        return int((row - col).abs_().max())

    def avg_bandwidth(self) -> float:
        row, col, _ = self.coo()
        return float((row - col).abs_().to(torch.float).mean())

    def bandwidth_proportion(self, bandwidth: int) -> float:
        row, col, _ = self.coo()
        tmp = (row - col).abs_()
        return int((tmp <= bandwidth).sum()) / self.nnz()

    def is_quadratic(self) -> bool:
        return self.sparse_size(0) == self.sparse_size(1)

    def is_symmetric(self) -> bool:
        if not self.is_quadratic():
            return False

        rowptr, col, value1 = self.csr()
        colptr, row, value2 = self.csc()

        if (rowptr != colptr).any() or (col != row).any():
            return False

        if value1 is None or value2 is None:
            return True
        else:
            return bool((value1 == value2).all())

    def to_symmetric(self, reduce: str = "sum"):
        N = max(self.size(0), self.size(1))

        row, col, value = self.coo()
        idx = col.new_full((2 * col.numel() + 1, ), -1)
        idx[1:row.numel() + 1] = row
        idx[row.numel() + 1:] = col
        idx[1:] *= N
        idx[1:row.numel() + 1] += col
        idx[row.numel() + 1:] += row

        idx, perm = idx.sort()
        mask = idx[1:] > idx[:-1]
        perm = perm[1:].sub_(1)
        idx = perm[mask]

        if value is not None:
            ptr = mask.nonzero().flatten()
            ptr = torch.cat([ptr, ptr.new_full((1, ), perm.size(0))])
            value = torch.cat([value, value])[perm]
            value = segment_csr(value, ptr, reduce=reduce)

        new_row = torch.cat([row, col], dim=0)[idx]
        new_col = torch.cat([col, row], dim=0)[idx]

        out = SparseTensor(
            row=new_row,
            rowptr=None,
            col=new_col,
            value=value,
            sparse_sizes=(N, N),
            is_sorted=True,
            trust_data=True,
        )
        return out

    def detach_(self):
        value = self.storage.value()
        if value is not None:
            value.detach_()
        return self

    def detach(self):
        value = self.storage.value()
        if value is not None:
            value = value.detach()
        return self.set_value(value, layout='coo')

    def requires_grad(self) -> bool:
        value = self.storage.value()
        if value is not None:
            return value.requires_grad
        else:
            return False

    def requires_grad_(
        self,
        requires_grad: bool = True,
        dtype: Optional[int] = None,
    ):
        if requires_grad and not self.has_value():
            self.fill_value_(1., dtype)

        value = self.storage.value()
        if value is not None:
            value.requires_grad_(requires_grad)
        return self

    def pin_memory(self):
        return self.from_storage(self.storage.pin_memory())

    def is_pinned(self) -> bool:
        return self.storage.is_pinned()

    def device(self):
        return self.storage.col().device

    def cpu(self):
        return self.to_device(device=torch.device('cpu'), non_blocking=False)

    def cuda(self):
        return self.from_storage(self.storage.cuda())

    def is_cuda(self) -> bool:
        return self.storage.col().is_cuda

    def dtype(self):
        value = self.storage.value()
        return value.dtype if value is not None else torch.float

    def is_floating_point(self) -> bool:
        value = self.storage.value()
        return torch.is_floating_point(value) if value is not None else True

    def bfloat16(self):
        return self.type(dtype=torch.bfloat16, non_blocking=False)

    def bool(self):
        return self.type(dtype=torch.bool, non_blocking=False)

    def byte(self):
        return self.type(dtype=torch.uint8, non_blocking=False)

    def char(self):
        return self.type(dtype=torch.int8, non_blocking=False)

    def half(self):
        return self.type(dtype=torch.half, non_blocking=False)

    def float(self):
        return self.type(dtype=torch.float, non_blocking=False)

    def double(self):
        return self.type(dtype=torch.double, non_blocking=False)

    def short(self):
        return self.type(dtype=torch.short, non_blocking=False)

    def int(self):
        return self.type(dtype=torch.int, non_blocking=False)

    def long(self):
        return self.type(dtype=torch.long, non_blocking=False)

    # Conversions #############################################################

    def to_dense(self, dtype: Optional[int] = None) -> torch.Tensor:
        row, col, value = self.coo()

        if value is not None:
            mat = torch.zeros(
                self.sizes(),
                dtype=value.dtype,
                device=self.device(),
            )
        else:
            mat = torch.zeros(self.sizes(), dtype=dtype, device=self.device())

        if value is not None:
            mat[row, col] = value
        else:
            mat[row, col] = torch.ones(
                self.nnz(),
                dtype=mat.dtype,
                device=mat.device,
            )

        return mat

    def to_torch_sparse_coo_tensor(
        self,
        dtype: Optional[int] = None,
    ) -> torch.Tensor:
        row, col, value = self.coo()
        index = torch.stack([row, col], dim=0)

        if value is None:
            value = torch.ones(self.nnz(), dtype=dtype, device=self.device())

        return torch.sparse_coo_tensor(index, value, self.sizes())

    def to_torch_sparse_csr_tensor(
        self,
        dtype: Optional[int] = None,
    ) -> torch.Tensor:
        rowptr, col, value = self.csr()

        if value is None:
            value = torch.ones(self.nnz(), dtype=dtype, device=self.device())

        return torch.sparse_csr_tensor(rowptr, col, value, self.sizes())

    def to_torch_sparse_csc_tensor(
        self,
        dtype: Optional[int] = None,
    ) -> torch.Tensor:
        colptr, row, value = self.csc()

        if value is None:
            value = torch.ones(self.nnz(), dtype=dtype, device=self.device())

        return torch.sparse_csc_tensor(colptr, row, value, self.sizes())


# Python Bindings #############################################################


def share_memory_(self: SparseTensor) -> SparseTensor:
    self.storage.share_memory_()
    return self


def is_shared(self: SparseTensor) -> bool:
    return self.storage.is_shared()


def to(self, *args: Optional[List[Any]],
       **kwargs: Optional[Dict[str, Any]]) -> SparseTensor:
    device, dtype, non_blocking = torch._C._nn._parse_to(*args, **kwargs)[:3]

    if dtype is not None:
        self = self.type(dtype=dtype, non_blocking=non_blocking)
    if device is not None:
        self = self.to_device(device=device, non_blocking=non_blocking)

    return self


def cpu(self) -> SparseTensor:
    return self.device_as(torch.tensor(0., device='cpu'))


def cuda(
    self,
    device: Optional[Union[int, str]] = None,
    non_blocking: bool = False,
):
    return self.device_as(torch.tensor(0., device=device or 'cuda'))


def __getitem__(self: SparseTensor, index: Any) -> SparseTensor:
    index = list(index) if isinstance(index, tuple) else [index]
    # More than one `Ellipsis` is not allowed...
    if len([
            i for i in index
            if not isinstance(i, (torch.Tensor, np.ndarray)) and i == ...
    ]) > 1:
        raise SyntaxError

    dim = 0
    out = self
    while len(index) > 0:
        item = index.pop(0)
        if isinstance(item, (list, tuple)):
            item = torch.tensor(item, device=self.device())
        if isinstance(item, np.ndarray):
            item = torch.from_numpy(item).to(self.device())

        if isinstance(item, int):
            out = out.select(dim, item)
            dim += 1
        elif isinstance(item, slice):
            if item.step is not None:
                raise ValueError('Step parameter not yet supported.')

            start = 0 if item.start is None else item.start
            start = self.size(dim) + start if start < 0 else start

            stop = self.size(dim) if item.stop is None else item.stop
            stop = self.size(dim) + stop if stop < 0 else stop

            out = out.narrow(dim, start, max(stop - start, 0))
            dim += 1
        elif torch.is_tensor(item):
            if item.dtype == torch.bool:
                out = out.masked_select(dim, item)
                dim += 1
            elif item.dtype == torch.long:
                out = out.index_select(dim, item)
                dim += 1
        elif item == Ellipsis:
            if self.dim() - len(index) < dim:
                raise SyntaxError
            dim = self.dim() - len(index)
        else:
            raise SyntaxError

    return out


def __repr__(self: SparseTensor) -> str:
    i = ' ' * 6
    row, col, value = self.coo()
    infos = []
    infos += [f'row={indent(row.__repr__(), i)[len(i):]}']
    infos += [f'col={indent(col.__repr__(), i)[len(i):]}']

    if value is not None:
        infos += [f'val={indent(value.__repr__(), i)[len(i):]}']

    infos += [
        f'size={tuple(self.sizes())}, nnz={self.nnz()}, '
        f'density={100 * self.density():.02f}%'
    ]

    infos = ',\n'.join(infos)

    i = ' ' * (len(self.__class__.__name__) + 1)
    return f'{self.__class__.__name__}({indent(infos, i)[len(i):]})'


SparseTensor.share_memory_ = share_memory_
SparseTensor.is_shared = is_shared
SparseTensor.to = to
SparseTensor.cpu = cpu
SparseTensor.cuda = cuda
SparseTensor.__getitem__ = __getitem__
SparseTensor.__repr__ = __repr__

# Scipy Conversions ###########################################################

ScipySparseMatrix = Union[scipy.sparse.coo_matrix, scipy.sparse.csr_matrix,
                          scipy.sparse.csc_matrix]


@torch.jit.ignore
def from_scipy(mat: ScipySparseMatrix, has_value: bool = True) -> SparseTensor:
    colptr = None
    if isinstance(mat, scipy.sparse.csc_matrix):
        colptr = torch.from_numpy(mat.indptr).to(torch.long)

    mat = mat.tocsr()
    rowptr = torch.from_numpy(mat.indptr).to(torch.long)
    mat = mat.tocoo()
    row = torch.from_numpy(mat.row).to(torch.long)
    col = torch.from_numpy(mat.col).to(torch.long)
    value = None
    if has_value:
        value = torch.from_numpy(mat.data)
    sparse_sizes = mat.shape[:2]

    storage = SparseStorage(
        row=row,
        rowptr=rowptr,
        col=col,
        value=value,
        sparse_sizes=sparse_sizes,
        rowcount=None,
        colptr=colptr,
        colcount=None,
        csr2csc=None,
        csc2csr=None,
        is_sorted=True,
    )

    return SparseTensor.from_storage(storage)


@torch.jit.ignore
def to_scipy(
    self: SparseTensor,
    layout: Optional[str] = None,
    dtype: Optional[torch.dtype] = None,
) -> ScipySparseMatrix:
    assert self.dim() == 2
    layout = get_layout(layout)

    if not self.has_value():
        ones = torch.ones(self.nnz(), dtype=dtype).numpy()

    if layout == 'coo':
        row, col, value = self.coo()
        row = row.detach().cpu().numpy()
        col = col.detach().cpu().numpy()
        value = value.detach().cpu().numpy() if self.has_value() else ones
        return scipy.sparse.coo_matrix((value, (row, col)), self.sizes())
    elif layout == 'csr':
        rowptr, col, value = self.csr()
        rowptr = rowptr.detach().cpu().numpy()
        col = col.detach().cpu().numpy()
        value = value.detach().cpu().numpy() if self.has_value() else ones
        return scipy.sparse.csr_matrix((value, col, rowptr), self.sizes())
    elif layout == 'csc':
        colptr, row, value = self.csc()
        colptr = colptr.detach().cpu().numpy()
        row = row.detach().cpu().numpy()
        value = value.detach().cpu().numpy() if self.has_value() else ones
        return scipy.sparse.csc_matrix((value, row, colptr), self.sizes())


SparseTensor.from_scipy = from_scipy
SparseTensor.to_scipy = to_scipy