1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
|
import time
import torch
from torchtext.prototype.datasets import AG_NEWS
from torchtext.prototype.vectors import FastText as FastTextExperimental
from torchtext.vocab import FastText
def benchmark_experimental_vectors():
def _run_benchmark_lookup(tokens, vector):
t0 = time.monotonic()
for token in tokens:
vector[token]
print("Lookup time:", time.monotonic() - t0)
train = AG_NEWS(split="train")
vocab = train.get_vocab()
tokens = []
for (label, text) in train:
for id in text.tolist():
tokens.append(vocab.itos[id])
# existing FastText construction
print("FastText Existing Construction")
t0 = time.monotonic()
fast_text = FastText()
print("Construction time:", time.monotonic() - t0)
# experimental FastText construction
print("FastText Experimental Construction")
t0 = time.monotonic()
fast_text_experimental = FastTextExperimental(validate_file=False)
print("Construction time:", time.monotonic() - t0)
# existing FastText eager lookup
print("FastText Existing - Eager Mode")
_run_benchmark_lookup(tokens, fast_text)
# experimental FastText eager lookup
print("FastText Experimental - Eager Mode")
_run_benchmark_lookup(tokens, fast_text_experimental)
# experimental FastText jit lookup
print("FastText Experimental - Jit Mode")
jit_fast_text_experimental = torch.jit.script(fast_text_experimental)
_run_benchmark_lookup(tokens, jit_fast_text_experimental)
if __name__ == "__main__":
benchmark_experimental_vectors()
|