File: benchmark_pytext_vocab.py

package info (click to toggle)
pytorch-text 0.14.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 11,560 kB
  • sloc: python: 14,197; cpp: 2,404; sh: 214; makefile: 20
file content (199 lines) | stat: -rw-r--r-- 8,315 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import sys
import time
from collections import Counter, OrderedDict
from typing import List, Union

# this is needed because we want to add 'torchtext/examples/data_pipeline' directory to the
# `sys.path` variable in order to import the pytext_vocab (since its not a module)
sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "examples", "vocab"))

import torch
from pytext.data.utils import Vocabulary as PytextVocabulary
from pytext.torchscript.vocab import ScriptVocabulary as PytextScriptVocabulary
from pytext_vocab import ScriptVocab as ExperimentalScriptVocabulary
from torchtext.prototype.datasets import AG_NEWS


def _run_benchmark_lookup(tokens, vocab, num_iters=1):
    def _run_benchmark_pytext_vocab(toks, v: PytextVocabulary):
        for token_or_tokens_list in toks:
            v.lookup_all(token_or_tokens_list)

    def _run_benchmark_pytext_script_vocab(toks, v: PytextScriptVocabulary):
        # list lookup
        if isinstance(toks, list) and isinstance(toks[0], list):
            for tokens_list in toks:
                v.lookup_indices_1d(tokens_list)
        # single token lookup
        elif isinstance(toks, list):
            for token in toks:
                v.lookup_indices_1d([token])
        else:
            raise RuntimeError("Received tokens of incorrect type {}.".format(type(toks)))

    def _run_benchmark_experimental_script_vocab(toks, v: ExperimentalScriptVocabulary):
        # list lookup
        if isinstance(toks, list) and isinstance(toks[0], list):
            for tokens_list in toks:
                v.lookup_indices_1d(tokens_list)
        # single token lookup
        elif isinstance(toks, list):
            for token in toks:
                v[token]
        else:
            raise RuntimeError("Received tokens of incorrect type {}.".format(type(toks)))

    t0 = time.monotonic()
    if isinstance(vocab, PytextVocabulary):
        for _ in range(num_iters):
            _run_benchmark_pytext_vocab(tokens, vocab)
    elif isinstance(vocab, PytextScriptVocabulary):
        for _ in range(num_iters):
            _run_benchmark_pytext_script_vocab(tokens, vocab)
    elif isinstance(vocab, (ExperimentalScriptVocabulary, torch.jit._script.RecursiveScriptModule)):
        for _ in range(num_iters):
            _run_benchmark_experimental_script_vocab(tokens, vocab)
    else:
        raise RuntimeError("Received vocab of incorrect type {}.".format(type(vocab)))

    print("Lookup time:", time.monotonic() - t0)


def _run_benchmark_lookup_jit_for_loop(tokens: Union[List[str], List[List[str]]], vocab, num_iters=1):
    @torch.jit.script
    def _run_benchmark_pytext_script_vocab(toks: List[str], v: PytextScriptVocabulary):
        for token in toks:
            v.lookup_indices_1d([token])

    @torch.jit.script
    def _run_benchmark_experimental_script_vocab(toks: List[str], v: ExperimentalScriptVocabulary):
        for token in toks:
            v[token]

    @torch.jit.script
    def _run_benchmark_lists_pytext_script_vocab(tok_lists: List[List[str]], v: PytextScriptVocabulary):
        for tokens_list in tok_lists:
            v.lookup_indices_1d(tokens_list)

    @torch.jit.script
    def _run_benchmark_lists_experimental_script_vocab(tok_lists: List[List[str]], v: ExperimentalScriptVocabulary):
        for tokens_list in tok_lists:
            v.lookup_indices_1d(tokens_list)

    t0 = time.monotonic()
    # list lookup
    if isinstance(tokens, list) and isinstance(tokens[0], list):
        if isinstance(vocab, PytextScriptVocabulary):
            for _ in range(num_iters):
                _run_benchmark_lists_pytext_script_vocab(tokens, vocab)
        elif isinstance(vocab, (ExperimentalScriptVocabulary, torch.jit._script.RecursiveScriptModule)):

            for _ in range(num_iters):
                _run_benchmark_lists_experimental_script_vocab(tokens, vocab)
        else:
            raise RuntimeError("Received vocab of incorrect type {}.".format(type(vocab)))
    # single token lookup
    elif isinstance(tokens, list):
        if isinstance(vocab, PytextScriptVocabulary):
            for _ in range(num_iters):
                _run_benchmark_pytext_script_vocab(tokens, vocab)
        elif isinstance(vocab, (ExperimentalScriptVocabulary, torch.jit._script.RecursiveScriptModule)):
            for _ in range(num_iters):
                _run_benchmark_experimental_script_vocab(tokens, vocab)
        else:
            raise RuntimeError("Received vocab of incorrect type {}.".format(type(vocab)))
    else:
        raise RuntimeError("Received tokens of incorrect type {}.".format(type(tokens)))

    print("Lookup time:", time.monotonic() - t0)


def benchmark_experimental_vocab():
    (train,) = AG_NEWS(data_select="train")
    vocab = train.get_vocab()
    tokens: List[str] = []
    tokens_lists: List[List[str]] = []

    for (_, text) in train:
        cur_tokens = []
        for id in text.tolist():
            cur_tokens.append(vocab.itos[id])
        tokens_lists.append(cur_tokens)
        tokens += cur_tokens

    print("Tokens size:", len(tokens))
    print("Tokens list size:", len(tokens_lists))

    counter = Counter(tokens)
    sorted_by_freq_tuples = sorted(counter.items(), key=lambda x: x[1], reverse=True)

    vocab_list = [pair[0] for pair in sorted_by_freq_tuples]
    vocab_list.insert(0, "<unk>")
    ordered_dict = OrderedDict(sorted_by_freq_tuples)

    # pytext vocab construction
    print("Pytext Vocabulary")
    t0 = time.monotonic()
    pytext_vocab = PytextVocabulary(vocab_list)
    print("Construction time:", time.monotonic() - t0)

    # pytext ScriptVocab construction
    print("Pytext Script Vocabulary")
    t0 = time.monotonic()
    pytext_script_vocab = PytextScriptVocabulary(vocab_list)
    print("Construction time:", time.monotonic() - t0)
    jit_pytext_script_vocab = torch.jit.script(pytext_script_vocab)

    # experimental ScriptVocab construction
    print("Experimental Script Vocabulary")
    t0 = time.monotonic()
    experimental_script_vocab = ExperimentalScriptVocabulary(ordered_dict, unk_token="<unk>")
    print("Construction time:", time.monotonic() - t0)
    jit_experimental_script_vocab = torch.jit.script(experimental_script_vocab)

    # pytext Vocab eager lookup
    print("Pytext Vocabulary - Eager Mode")
    _run_benchmark_lookup(tokens, pytext_vocab)
    _run_benchmark_lookup([tokens], pytext_vocab)
    _run_benchmark_lookup(tokens_lists, pytext_vocab)

    # pytext ScriptVocab eager lookup
    print("Pytext ScriptVocab - Eager Mode")
    _run_benchmark_lookup(tokens, pytext_script_vocab)
    _run_benchmark_lookup([tokens], pytext_script_vocab)
    _run_benchmark_lookup(tokens_lists, pytext_script_vocab)

    # experimental ScriptVocab eager lookup
    print("Experimental ScriptVocab - Eager Mode")
    _run_benchmark_lookup(tokens, experimental_script_vocab)
    _run_benchmark_lookup([tokens], experimental_script_vocab)
    _run_benchmark_lookup(tokens_lists, experimental_script_vocab)

    # pytext ScriptVocab jit lookup
    print("Pytext ScriptVocab - Jit Mode")
    _run_benchmark_lookup(tokens, jit_pytext_script_vocab)
    _run_benchmark_lookup([tokens], jit_pytext_script_vocab)
    _run_benchmark_lookup(tokens_lists, jit_pytext_script_vocab)

    # experimental ScriptVocab jit lookup
    print("Experimental ScriptVocab - Jit Mode")
    _run_benchmark_lookup(tokens, jit_experimental_script_vocab)
    _run_benchmark_lookup([tokens], jit_experimental_script_vocab)
    _run_benchmark_lookup(tokens_lists, jit_experimental_script_vocab)

    # pytext ScriptVocab JITed for loop
    print("Pytext ScriptVocab - Jit For Loop")
    _run_benchmark_lookup_jit_for_loop(tokens, jit_pytext_script_vocab)
    _run_benchmark_lookup_jit_for_loop([tokens], jit_pytext_script_vocab)
    _run_benchmark_lookup_jit_for_loop(tokens_lists, jit_pytext_script_vocab)

    # experimental ScriptVocab JITed for loop
    print("Experimental ScriptVocab - Jit For Loop")
    _run_benchmark_lookup_jit_for_loop(tokens, jit_experimental_script_vocab)
    _run_benchmark_lookup_jit_for_loop([tokens], jit_experimental_script_vocab)
    _run_benchmark_lookup_jit_for_loop(tokens_lists, jit_experimental_script_vocab)


if __name__ == "__main__":
    benchmark_experimental_vocab()