File: benchmark_sentencepiece.py

package info (click to toggle)
pytorch-text 0.14.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 11,560 kB
  • sloc: python: 14,197; cpp: 2,404; sh: 214; makefile: 20
file content (51 lines) | stat: -rw-r--r-- 1,902 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import argparse
import time

from torchtext.data.functional import load_sp_model as load_torchbind_sp_model
from torchtext.datasets import DATASETS
from torchtext.prototype.transforms import load_sp_model as load_pybind_sp_model
from torchtext.utils import download_from_url


def benchmark_sentencepiece(args):
    def _run_benchmark(train, spm_processor):
        t0 = time.monotonic()
        for (_, text) in train:
            spm_processor(text)
        print("Sentencepiece processor time:", time.monotonic() - t0)

    # Download a pretrained sentencepiece model
    sp_model_path = download_from_url(
        "https://pytorch.s3.amazonaws.com/models/text/pretrained_spm/text_unigram_15000.model"
    )

    # existing sentencepiece model with torchbind
    train = DATASETS[args.dataset](split="train")
    sp_model = load_torchbind_sp_model(sp_model_path)
    print("SentencePiece EncodeAsIds - torchbind")
    _run_benchmark(train, sp_model.EncodeAsIds)

    # experimental sentencepiece model with pybind
    train = DATASETS[args.dataset](split="train")
    sp_model = load_pybind_sp_model(sp_model_path)
    print("SentencePiece EncodeAsIds - pybind")
    _run_benchmark(train, sp_model.EncodeAsIds)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="SentencePiece benchmark")
    parser.add_argument("--dataset", type=str, default="AG_NEWS", help="Dataset for performance benchmark")
    args = parser.parse_args()
    benchmark_sentencepiece(args)

# Running with AG_NEWS
# SentencePiece EncodeAsIds - torchbind
# Sentencepiece processor time: 11.536989663727582
# SentencePiece EncodeAsIds - pybind
# Sentencepiece processor time: 11.38821320142597

# Running with YelpReviewFull
# SentencePiece EncodeAsIds - torchbind
# Sentencepiece processor time: 224.23954573180526
# SentencePiece EncodeAsIds - pybind
# Sentencepiece processor time: 217.134037473239