1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
import json
from argparse import ArgumentParser
import torch
import torcharrow as ta
import torcharrow._torcharrow as _ta
import torcharrow.dtypes as dt
import torcharrow.pytorch as tap
import torchtext.transforms as T
from torch.hub import load_state_dict_from_url
from torch.nn import Module
from torch.utils.data import DataLoader
from torcharrow import functional as ta_F
from torchtext.datasets import SST2
from torchtext.utils import get_asset_local_path
def init_ta_gpt2bpe_encoder():
encoder_json_path = "https://download.pytorch.org/models/text/gpt2_bpe_encoder.json"
vocab_bpe_path = "https://download.pytorch.org/models/text/gpt2_bpe_vocab.bpe"
encoder_json_path = get_asset_local_path(encoder_json_path)
vocab_bpe_path = get_asset_local_path(vocab_bpe_path)
_seperator = "\u0001"
# load bpe encoder and bpe decoder
with open(encoder_json_path, "r", encoding="utf-8") as f:
bpe_encoder = json.load(f)
# load bpe vocab
with open(vocab_bpe_path, "r", encoding="utf-8") as f:
bpe_vocab = f.read()
bpe_merge_ranks = {
_seperator.join(merge_pair.split()): i for i, merge_pair in enumerate(bpe_vocab.split("\n")[1:-1])
}
# Caching is enabled in Eager mode
bpe = _ta.GPT2BPEEncoder(bpe_encoder, bpe_merge_ranks, _seperator, T.bytes_to_unicode(), True)
return bpe
def init_ta_gpt2bpe_vocab():
vocab_path = "https://download.pytorch.org/models/text/roberta.vocab.pt"
vocab_path = get_asset_local_path(vocab_path)
vocab = torch.load(vocab_path)
ta_vocab = _ta.Vocab(vocab.get_itos(), vocab.get_default_index())
return ta_vocab
class RobertaTransformDataFrameNativeOps(Module):
def __init__(self) -> None:
super().__init__()
# Tokenizer to split input text into tokens
self.tokenizer = init_ta_gpt2bpe_encoder()
# vocabulary converting tokens to IDs
self.vocab = init_ta_gpt2bpe_vocab()
# Add BOS token to the beginning of sentence
self.add_bos = T.AddToken(token=0, begin=True)
# Add EOS token to the end of sentence
self.add_eos = T.AddToken(token=2, begin=False)
def forward(self, input: ta.DataFrame) -> ta.DataFrame:
input["tokens"] = ta_F.bpe_tokenize(self.tokenizer, input["text"])
input["tokens"] = input["tokens"].list.slice(stop=254)
input["tokens"] = ta_F.lookup_indices(self.vocab, input["tokens"])
input["tokens"] = ta_F.add_tokens(input["tokens"], [0], begin=True)
input["tokens"] = ta_F.add_tokens(input["tokens"], [2], begin=False)
return input
class RobertaTransformDataFrameUDF(Module):
def __init__(self) -> None:
super().__init__()
# Instantiate various transforms
# Tokenizer to split input text into tokens
encoder_json_path = "https://download.pytorch.org/models/text/gpt2_bpe_encoder.json"
vocab_bpe_path = "https://download.pytorch.org/models/text/gpt2_bpe_vocab.bpe"
self.tokenizer = T.GPT2BPETokenizer(encoder_json_path, vocab_bpe_path)
# vocabulary converting tokens to IDs
vocab_path = "https://download.pytorch.org/models/text/roberta.vocab.pt"
self.vocab = T.VocabTransform(load_state_dict_from_url(vocab_path))
# Add BOS token to the beginning of sentence
self.add_bos = T.AddToken(token=0, begin=True)
# Add EOS token to the end of sentence
self.add_eos = T.AddToken(token=2, begin=False)
def forward(self, input: ta.DataFrame) -> ta.DataFrame:
input["tokens"] = input["text"].transform(self.tokenizer, dtype=dt.List(dt.string), format="python")
input["tokens"] = input["tokens"].list.slice(stop=254)
input["tokens"] = input["tokens"].transform(self.vocab, dtype=dt.List(dt.int32), format="python")
input["tokens"] = input["tokens"].transform(self.add_bos, format="python")
input["tokens"] = input["tokens"].transform(self.add_eos, format="python")
return input
def main(args):
# Instantiate transform
if args.ops_type == "udf":
transform = RobertaTransformDataFrameUDF()
elif args.ops_type == "native":
transform = RobertaTransformDataFrameNativeOps()
else:
raise Exception("Wrong ops type provided. Available options are `udf` and `native`")
# Create SST2 datapipe and apply pre-processing
train_dp = SST2(split="train")
# convert to DataFrame of size batches
# TODO: Figure out how to create DataFrame of larger size and create batches consequently
train_dp = train_dp.dataframe(columns=["text", "labels"], dataframe_size=args.batch_size)
# Apply transformation on DataFrame
train_dp = train_dp.map(transform)
# Remove not required columns
train_dp = train_dp.map(lambda x: x.drop(["text"]))
# convert DataFrame to tensor (This will yeild named tuple)
train_dp = train_dp.map(lambda x: x.to_tensor({"tokens": tap.PadSequence(padding_value=1)}))
# create DataLoader
dl = DataLoader(train_dp, batch_size=None)
train_steps = args.train_steps
for i, batch in enumerate(dl):
if i == train_steps:
break
# model_input = batch.tokens
# target = batch.labels
...
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--batch-size", default=4, type=int)
parser.add_argument("--train-steps", default=-1, type=int)
parser.add_argument("--ops-type", default="udf", choices=["udf", "native"], type=str)
main(parser.parse_args())
|