File: train.py

package info (click to toggle)
pytorch-text 0.14.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 11,560 kB
  • sloc: python: 14,197; cpp: 2,404; sh: 214; makefile: 20
file content (163 lines) | stat: -rw-r--r-- 7,013 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import argparse
import logging
import time

import torch
from model import TextClassificationModel
from torch.utils.data import DataLoader
from torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset
from torchtext.data.utils import get_tokenizer, ngrams_iterator
from torchtext.datasets import DATASETS
from torchtext.prototype.transforms import load_sp_model, PRETRAINED_SP_MODEL, SentencePieceTokenizer
from torchtext.utils import download_from_url
from torchtext.vocab import build_vocab_from_iterator

r"""
This file shows the training process of the text classification model.
"""


def yield_tokens(data_iter, ngrams):
    for _, text in data_iter:
        yield ngrams_iterator(tokenizer(text), ngrams)


def collate_batch(batch):
    label_list, text_list, offsets = [], [], [0]
    for (_label, _text) in batch:
        label_list.append(label_pipeline(_label))
        processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)
        text_list.append(processed_text)
        offsets.append(processed_text.size(0))
    label_list = torch.tensor(label_list, dtype=torch.int64)
    offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)
    text_list = torch.cat(text_list)
    return label_list.to(device), text_list.to(device), offsets.to(device)


def train(dataloader, model, optimizer, criterion, epoch):
    model.train()
    total_acc, total_count = 0, 0
    log_interval = 500

    for idx, (label, text, offsets) in enumerate(dataloader):
        optimizer.zero_grad()
        predited_label = model(text, offsets)
        loss = criterion(predited_label, label)
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)
        optimizer.step()
        total_acc += (predited_label.argmax(1) == label).sum().item()
        total_count += label.size(0)
        if idx % log_interval == 0 and idx > 0:
            print(
                "| epoch {:3d} | {:5d}/{:5d} batches "
                "| accuracy {:8.3f}".format(epoch, idx, len(dataloader), total_acc / total_count)
            )
            total_acc, total_count = 0, 0


def evaluate(dataloader, model):
    model.eval()
    total_acc, total_count = 0, 0

    with torch.no_grad():
        for idx, (label, text, offsets) in enumerate(dataloader):
            predited_label = model(text, offsets)
            total_acc += (predited_label.argmax(1) == label).sum().item()
            total_count += label.size(0)
    return total_acc / total_count


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Train a text classification model on text classification datasets.")
    parser.add_argument("dataset", type=str, default="AG_NEWS")
    parser.add_argument("--num-epochs", type=int, default=5, help="num epochs (default=5)")
    parser.add_argument("--embed-dim", type=int, default=32, help="embed dim. (default=32)")
    parser.add_argument("--batch-size", type=int, default=16, help="batch size (default=16)")
    parser.add_argument("--split-ratio", type=float, default=0.95, help="train/valid split ratio (default=0.95)")
    parser.add_argument("--lr", type=float, default=4.0, help="learning rate (default=4.0)")
    parser.add_argument("--lr-gamma", type=float, default=0.8, help="gamma value for lr (default=0.8)")
    parser.add_argument("--ngrams", type=int, default=2, help="ngrams (default=2)")
    parser.add_argument("--num-workers", type=int, default=1, help="num of workers (default=1)")
    parser.add_argument("--device", default="cpu", help="device (default=cpu)")
    parser.add_argument("--data-dir", default=".data", help="data directory (default=.data)")
    parser.add_argument(
        "--use-sp-tokenizer", type=bool, default=False, help="use sentencepiece tokenizer (default=False)"
    )
    parser.add_argument("--dictionary", help="path to save vocab")
    parser.add_argument("--save-model-path", help="path for saving model")
    parser.add_argument("--logging-level", default="WARNING", help="logging level (default=WARNING)")
    args = parser.parse_args()

    num_epochs = args.num_epochs
    embed_dim = args.embed_dim
    batch_size = args.batch_size
    lr = args.lr
    device = args.device
    data_dir = args.data_dir
    split_ratio = args.split_ratio
    ngrams = args.ngrams
    use_sp_tokenizer = args.use_sp_tokenizer

    logging.basicConfig(level=getattr(logging, args.logging_level))

    if use_sp_tokenizer:
        sp_model_path = download_from_url(PRETRAINED_SP_MODEL["text_unigram_15000"], root=data_dir)
        sp_model = load_sp_model(sp_model_path)
        tokenizer = SentencePieceTokenizer(sp_model)
    else:
        tokenizer = get_tokenizer("basic_english")

    train_iter = DATASETS[args.dataset](root=data_dir, split="train")
    vocab = build_vocab_from_iterator(yield_tokens(train_iter, ngrams), specials=["<unk>"])
    vocab.set_default_index(vocab["<unk>"])

    def text_pipeline(x):
        return vocab(list(ngrams_iterator(tokenizer(x), ngrams)))

    def label_pipeline(x):
        return int(x) - 1

    train_iter = DATASETS[args.dataset](root=data_dir, split="train")
    num_class = len(set([label for (label, _) in train_iter]))

    criterion = torch.nn.CrossEntropyLoss().to(device)
    model = TextClassificationModel(len(vocab), embed_dim, num_class).to(device)
    optimizer = torch.optim.SGD(model.parameters(), lr=lr)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)

    train_iter, test_iter = DATASETS[args.dataset]()
    train_dataset = to_map_style_dataset(train_iter)
    test_dataset = to_map_style_dataset(test_iter)
    num_train = int(len(train_dataset) * 0.95)
    split_train_, split_valid_ = random_split(train_dataset, [num_train, len(train_dataset) - num_train])

    train_dataloader = DataLoader(split_train_, batch_size=batch_size, shuffle=True, collate_fn=collate_batch)
    valid_dataloader = DataLoader(split_valid_, batch_size=batch_size, shuffle=True, collate_fn=collate_batch)
    test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_batch)

    for epoch in range(1, num_epochs + 1):
        epoch_start_time = time.time()
        train(train_dataloader, model, optimizer, criterion, epoch)
        accu_val = evaluate(valid_dataloader, model)
        scheduler.step()
        print("-" * 59)
        print(
            "| end of epoch {:3d} | time: {:5.2f}s | "
            "valid accuracy {:8.3f} ".format(epoch, time.time() - epoch_start_time, accu_val)
        )
        print("-" * 59)

    print("Checking the results of test dataset.")
    accu_test = evaluate(test_dataloader, model)
    print("test accuracy {:8.3f}".format(accu_test))

    if args.save_model_path:
        print("Saving model to {}".format(args.save_model_path))
        torch.save(model.to("cpu"), args.save_model_path)

    if args.dictionary is not None:
        print("Save vocab to {}".format(args.dictionary))
        torch.save(vocab, args.dictionary)