1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
import functools
import json
from argparse import ArgumentParser
import torch
import torch.nn as nn
import torcharrow._torcharrow as _ta
import torcharrow.pytorch as tap
import torchtext.functional as F
import torchtext.transforms as T
from torch.optim import AdamW
from torch.utils.data import DataLoader
from torcharrow import functional as ta_F
from torchtext.datasets import SST2
from torchtext.models import RobertaClassificationHead, ROBERTA_BASE_ENCODER
from torchtext.utils import get_asset_local_path
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
def init_ta_gpt2bpe_encoder():
encoder_json_path = "https://download.pytorch.org/models/text/gpt2_bpe_encoder.json"
vocab_bpe_path = "https://download.pytorch.org/models/text/gpt2_bpe_vocab.bpe"
encoder_json_path = get_asset_local_path(encoder_json_path)
vocab_bpe_path = get_asset_local_path(vocab_bpe_path)
_seperator = "\u0001"
# load bpe encoder and bpe decoder
with open(encoder_json_path, "r", encoding="utf-8") as f:
bpe_encoder = json.load(f)
# load bpe vocab
with open(vocab_bpe_path, "r", encoding="utf-8") as f:
bpe_vocab = f.read()
bpe_merge_ranks = {
_seperator.join(merge_pair.split()): i for i, merge_pair in enumerate(bpe_vocab.split("\n")[1:-1])
}
# Caching is enabled in Eager mode
bpe = _ta.GPT2BPEEncoder(bpe_encoder, bpe_merge_ranks, _seperator, T.bytes_to_unicode(), True)
return bpe
def init_ta_gpt2bpe_vocab():
vocab_path = "https://download.pytorch.org/models/text/roberta.vocab.pt"
vocab_path = get_asset_local_path(vocab_path)
vocab = torch.load(vocab_path)
ta_vocab = _ta.Vocab(vocab.get_itos(), vocab.get_default_index())
return ta_vocab
def prepoc(df, tokenizer, vocab):
df["tokens"] = ta_F.bpe_tokenize(tokenizer, df["text"])
df["tokens"] = df["tokens"].list.slice(stop=254)
df["tokens"] = ta_F.lookup_indices(vocab, df["tokens"])
df["tokens"] = ta_F.add_tokens(df["tokens"], [0], begin=True)
df["tokens"] = ta_F.add_tokens(df["tokens"], [2], begin=False)
return df
def get_dataloader(split, args):
# Instantiate TA tokenizer opaque object
tokenizer = init_ta_gpt2bpe_encoder()
# Instantiate TA vocab opaque object
vocab = init_ta_gpt2bpe_vocab()
# Create SST2 datapipe and apply pre-processing
train_dp = SST2(split=split)
# convert to DataFrame of size batches
train_dp = train_dp.dataframe(columns=["text", "labels"], dataframe_size=args.batch_size)
# Apply preproc on DataFrame
train_dp = train_dp.map(functools.partial(prepoc, tokenizer=tokenizer, vocab=vocab))
# (optional) Remove un-required columns
train_dp = train_dp.map(lambda x: x.drop(["text"]))
# convert DataFrame to tensor (This will yeild named tuple)
train_dp = train_dp.map(lambda x: x.to_tensor({"tokens": tap.PadSequence(padding_value=1)}))
# create DataLoader
dl = DataLoader(train_dp, batch_size=None)
return dl
classifier_head = RobertaClassificationHead(num_classes=2, input_dim=768)
model = ROBERTA_BASE_ENCODER.get_model(head=classifier_head)
model.to(DEVICE)
def train_step(input, target, optim, criteria):
output = model(input)
loss = criteria(output, target)
optim.zero_grad()
loss.backward()
optim.step()
def eval_step(input, target, criteria):
output = model(input)
loss = criteria(output, target).item()
return float(loss), (output.argmax(1) == target).type(torch.float).sum().item()
def evaluate(dataloader):
model.eval()
total_loss = 0
correct_predictions = 0
total_predictions = 0
counter = 0
with torch.no_grad():
for batch in dataloader:
input = F.to_tensor(batch["token_ids"], padding_value=1).to(DEVICE)
target = torch.tensor(batch["target"]).to(DEVICE)
loss, predictions = eval_step(input, target)
total_loss += loss
correct_predictions += predictions
total_predictions += len(target)
counter += 1
return total_loss / counter, correct_predictions / total_predictions
def main(args):
print(args)
train_dl = get_dataloader(split="train", args=args)
dev_dl = get_dataloader(split="dev", args=args)
learning_rate = args.learning_rate
optim = AdamW(model.parameters(), lr=learning_rate)
criteria = nn.CrossEntropyLoss()
for e in range(args.num_epochs):
for batch in train_dl:
input = batch.tokens.to(DEVICE)
target = batch.labels.to(DEVICE)
train_step(input, target, optim, criteria)
loss, accuracy = evaluate(dev_dl, criteria)
print("Epoch = [{}], loss = [{}], accuracy = [{}]".format(e, loss, accuracy))
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--batch-size", default=16, type=int, help="Input batch size used during training")
parser.add_argument("--num-epochs", default=1, type=int, help="Number of epochs to run training")
parser.add_argument("--learning-rate", default=1e-5, type=float, help="Learning rate used for training")
main(parser.parse_args())
|