1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
|
import lzma
import os
from collections import defaultdict
from unittest.mock import patch
from parameterized import parameterized
from torchtext.datasets import CC100
from torchtext.datasets.cc100 import VALID_CODES
from ..common.case_utils import TempDirMixin, zip_equal, get_random_unicode
from ..common.torchtext_test_case import TorchtextTestCase
def _get_mock_dataset(root_dir):
"""
root_dir: directory to the mocked dataset
"""
base_dir = os.path.join(root_dir, "CC100")
os.makedirs(base_dir, exist_ok=True)
seed = 1
mocked_data = defaultdict(list)
for language_code in VALID_CODES:
file_name = f"{language_code}.txt.xz"
compressed_file = os.path.join(base_dir, file_name)
with lzma.open(compressed_file, "wt", encoding="utf-8") as f:
for i in range(5):
rand_string = get_random_unicode(seed)
content = f"{rand_string}\n"
f.write(content)
mocked_data[language_code].append((language_code, rand_string))
seed += 1
return mocked_data
class TestCC100(TempDirMixin, TorchtextTestCase):
@classmethod
def setUpClass(cls):
super().setUpClass()
cls.root_dir = cls.get_base_temp_dir()
cls.samples = _get_mock_dataset(os.path.join(cls.root_dir, "datasets"))
cls.patcher = patch("torchdata.datapipes.iter.util.cacheholder._hash_check", return_value=True)
cls.patcher.start()
@classmethod
def tearDownClass(cls):
cls.patcher.stop()
super().tearDownClass()
@parameterized.expand(VALID_CODES)
def test_cc100(self, language_code):
dataset = CC100(root=self.root_dir, language_code=language_code)
samples = list(dataset)
expected_samples = self.samples[language_code]
for sample, expected_sample in zip_equal(samples, expected_samples):
self.assertEqual(sample, expected_sample)
|