File: test_cc100.py

package info (click to toggle)
pytorch-text 0.14.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 11,560 kB
  • sloc: python: 14,197; cpp: 2,404; sh: 214; makefile: 20
file content (59 lines) | stat: -rw-r--r-- 1,957 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import lzma
import os
from collections import defaultdict
from unittest.mock import patch

from parameterized import parameterized
from torchtext.datasets import CC100
from torchtext.datasets.cc100 import VALID_CODES

from ..common.case_utils import TempDirMixin, zip_equal, get_random_unicode
from ..common.torchtext_test_case import TorchtextTestCase


def _get_mock_dataset(root_dir):
    """
    root_dir: directory to the mocked dataset
    """
    base_dir = os.path.join(root_dir, "CC100")
    os.makedirs(base_dir, exist_ok=True)

    seed = 1
    mocked_data = defaultdict(list)

    for language_code in VALID_CODES:
        file_name = f"{language_code}.txt.xz"
        compressed_file = os.path.join(base_dir, file_name)
        with lzma.open(compressed_file, "wt", encoding="utf-8") as f:
            for i in range(5):
                rand_string = get_random_unicode(seed)
                content = f"{rand_string}\n"
                f.write(content)
                mocked_data[language_code].append((language_code, rand_string))
                seed += 1

    return mocked_data


class TestCC100(TempDirMixin, TorchtextTestCase):
    @classmethod
    def setUpClass(cls):
        super().setUpClass()
        cls.root_dir = cls.get_base_temp_dir()
        cls.samples = _get_mock_dataset(os.path.join(cls.root_dir, "datasets"))
        cls.patcher = patch("torchdata.datapipes.iter.util.cacheholder._hash_check", return_value=True)
        cls.patcher.start()

    @classmethod
    def tearDownClass(cls):
        cls.patcher.stop()
        super().tearDownClass()

    @parameterized.expand(VALID_CODES)
    def test_cc100(self, language_code):
        dataset = CC100(root=self.root_dir, language_code=language_code)

        samples = list(dataset)
        expected_samples = self.samples[language_code]
        for sample, expected_sample in zip_equal(samples, expected_samples):
            self.assertEqual(sample, expected_sample)