1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
|
import hashlib
import os
import tarfile
from collections import defaultdict
from unittest.mock import patch
from parameterized import parameterized
from torchtext.datasets import CNNDM
from ..common.case_utils import TempDirMixin, zip_equal, get_random_unicode
from ..common.torchtext_test_case import TorchtextTestCase
def _get_mock_dataset(root_dir):
"""
root_dir: directory to the mocked dataset
"""
base_dir = os.path.join(root_dir, "CNNDM")
temp_dataset_dir = os.path.join(base_dir, "temp_dataset_dir")
os.makedirs(temp_dataset_dir, exist_ok=True)
seed = 1
mocked_data = defaultdict(list)
for source in ["cnn", "dailymail"]:
source_dir = os.path.join(temp_dataset_dir, source, "stories")
os.makedirs(source_dir, exist_ok=True)
for split in ["train", "val", "test"]:
stories = []
for i in range(5):
url = "_".join([source, split, str(i)])
h = hashlib.sha1()
h.update(url.encode())
filename = h.hexdigest() + ".story"
txt_file = os.path.join(source_dir, filename)
with open(txt_file, "w", encoding=("utf-8")) as f:
article = get_random_unicode(seed) + "."
abstract = get_random_unicode(seed + 1) + "."
dataset_line = (article, abstract)
f.writelines([article, "\n@highlight\n", abstract])
stories.append((txt_file, dataset_line))
seed += 2
# append stories to correct dataset split, must be in lexicographic order of filenames per dataset
stories.sort(key=lambda x: x[0])
mocked_data[split] += [t[1] for t in stories]
compressed_dataset_path = os.path.join(base_dir, f"{source}_stories.tgz")
# create zip file from dataset folder
with tarfile.open(compressed_dataset_path, "w:gz") as tar:
tar.add(os.path.join(temp_dataset_dir, source), arcname=source)
return mocked_data
class TestCNNDM(TempDirMixin, TorchtextTestCase):
root_dir = None
samples = []
@classmethod
def setUpClass(cls):
super().setUpClass()
cls.root_dir = cls.get_base_temp_dir()
cls.samples = _get_mock_dataset(os.path.join(cls.root_dir, "datasets"))
cls.patcher = patch("torchdata.datapipes.iter.util.cacheholder._hash_check", return_value=True)
cls.patcher.start()
@classmethod
def tearDownClass(cls):
cls.patcher.stop()
super().tearDownClass()
def _mock_split_list(source, split):
story_fnames = []
for i in range(5):
url = "_".join([source, split, str(i)])
h = hashlib.sha1()
h.update(url.encode())
filename = h.hexdigest() + ".story"
story_fnames.append(filename)
return story_fnames
@parameterized.expand(["train", "val", "test"])
@patch("torchtext.datasets.cnndm._get_split_list", _mock_split_list)
def test_cnndm(self, split):
dataset = CNNDM(root=self.root_dir, split=split)
samples = list(dataset)
expected_samples = self.samples[split]
self.assertEqual(expected_samples, samples)
@parameterized.expand(["train", "val", "test"])
@patch("torchtext.datasets.cnndm._get_split_list", _mock_split_list)
def test_cnndm_split_argument(self, split):
dataset1 = CNNDM(root=self.root_dir, split=split)
(dataset2,) = CNNDM(root=self.root_dir, split=(split,))
for d1, d2 in zip_equal(dataset1, dataset2):
self.assertEqual(d1, d2)
|