1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
import itertools
import os
import random
import shutil
import string
import tarfile
import tempfile
from collections import defaultdict
from unittest.mock import patch
from parameterized import parameterized
from torchtext.data.datasets_utils import _generate_iwslt_files_for_lang_and_split
from torchtext.datasets.iwslt2016 import (
DATASET_NAME,
IWSLT2016,
SUPPORTED_DATASETS,
SET_NOT_EXISTS,
)
from ..common.case_utils import zip_equal
from ..common.torchtext_test_case import TorchtextTestCase
SUPPORTED_LANGPAIRS = [(k, e) for k, v in SUPPORTED_DATASETS["language_pair"].items() for e in v]
SUPPORTED_DEVTEST_SPLITS = SUPPORTED_DATASETS["valid_test"]
DEV_TEST_SPLITS = [(dev, test) for dev, test in itertools.product(SUPPORTED_DEVTEST_SPLITS, repeat=2) if dev != test]
def _generate_uncleaned_train():
"""Generate tags files"""
file_contents = []
examples = []
xml_tags = [
"<url",
"<keywords",
"<talkid",
"<description",
"<reviewer",
"<translator",
"<title",
"<speaker",
"<doc",
]
for i in range(100):
rand_string = " ".join(random.choice(string.ascii_letters) for i in range(10))
# With a 10% change, add one of the XML tags which is cleaned
# to ensure cleaning happens appropriately
if random.random() < 0.1:
open_tag = random.choice(xml_tags) + ">"
# Open tag already contains the closing >
close_tag = "</" + open_tag[1:]
file_contents.append(open_tag + rand_string + close_tag)
else:
examples.append(rand_string + "\n")
file_contents.append(rand_string)
return examples, "\n".join(file_contents)
def _generate_uncleaned_valid():
file_contents = ["<root>"]
examples = []
for doc_id in range(5):
file_contents.append(f'<doc docid="{doc_id}" genre="lectures">')
for seg_id in range(100):
rand_string = " ".join(random.choice(string.ascii_letters) for i in range(10))
examples.append(rand_string)
file_contents.append(f"<seg>{rand_string} </seg>" + "\n")
file_contents.append("</doc>")
file_contents.append("</root>")
return examples, " ".join(file_contents)
def _generate_uncleaned_test():
return _generate_uncleaned_valid()
def _generate_uncleaned_contents(split):
random.seed(1)
return {
"train": _generate_uncleaned_train(),
"valid": _generate_uncleaned_valid(),
"test": _generate_uncleaned_test(),
}[split]
def _get_mock_dataset(root_dir, split, src, tgt, valid_set, test_set):
"""
root_dir: directory to the mocked dataset
"""
base_dir = os.path.join(root_dir, DATASET_NAME)
temp_dataset_dir = os.path.join(base_dir, "temp_dataset_dir")
outer_temp_dataset_dir = os.path.join(temp_dataset_dir, f"texts/{src}/{tgt}/")
inner_temp_dataset_dir = os.path.join(outer_temp_dataset_dir, f"{src}-{tgt}")
os.makedirs(outer_temp_dataset_dir, exist_ok=True)
os.makedirs(inner_temp_dataset_dir, exist_ok=True)
mocked_data = defaultdict(lambda: defaultdict(list))
cleaned_file_names, uncleaned_file_names = _generate_iwslt_files_for_lang_and_split(
16, src, tgt, valid_set, test_set
)
uncleaned_src_file = uncleaned_file_names[src][split]
uncleaned_tgt_file = uncleaned_file_names[tgt][split]
cleaned_src_file = cleaned_file_names[src][split]
cleaned_tgt_file = cleaned_file_names[tgt][split]
for (unclean_file_name, clean_file_name) in [
(uncleaned_src_file, cleaned_src_file),
(uncleaned_tgt_file, cleaned_tgt_file),
]:
# Get file extension (i.e., the language) without the . prefix (.en -> en)
lang = os.path.splitext(unclean_file_name)[1][1:]
out_file = os.path.join(inner_temp_dataset_dir, unclean_file_name)
with open(out_file, "w") as f:
mocked_data_for_split, file_contents = _generate_uncleaned_contents(split)
mocked_data[split][lang] = mocked_data_for_split
f.write(file_contents)
inner_compressed_dataset_path = os.path.join(outer_temp_dataset_dir, f"{src}-{tgt}.tgz")
# create tar file from dataset folder
with tarfile.open(inner_compressed_dataset_path, "w:gz") as tar:
tar.add(inner_temp_dataset_dir, arcname=f"{src}-{tgt}")
# this is necessary so that the outer tarball only includes the inner tarball
shutil.rmtree(inner_temp_dataset_dir)
outer_temp_dataset_path = os.path.join(base_dir, "2016-01.tgz")
with tarfile.open(outer_temp_dataset_path, "w:gz") as tar:
tar.add(temp_dataset_dir, arcname="2016-01")
return list(zip(mocked_data[split][src], mocked_data[split][tgt]))
class TestIWSLT2016(TorchtextTestCase):
root_dir = None
patcher = None
@classmethod
def setUpClass(cls):
super().setUpClass()
cls.patcher = patch("torchdata.datapipes.iter.util.cacheholder._hash_check", return_value=True)
cls.patcher.start()
@classmethod
def tearDownClass(cls):
cls.patcher.stop()
super().tearDownClass()
@parameterized.expand(
[
(split, src, tgt, dev_set, test_set)
for split in ("train", "valid", "test")
for dev_set, test_set in DEV_TEST_SPLITS
for src, tgt in SUPPORTED_LANGPAIRS
if (dev_set not in SET_NOT_EXISTS[(src, tgt)] and test_set not in SET_NOT_EXISTS[(src, tgt)])
]
)
def test_iwslt2016(self, split, src, tgt, dev_set, test_set):
with tempfile.TemporaryDirectory() as root_dir:
expected_samples = _get_mock_dataset(os.path.join(root_dir, "datasets"), split, src, tgt, dev_set, test_set)
dataset = IWSLT2016(
root=root_dir,
split=split,
language_pair=(src, tgt),
valid_set=dev_set,
test_set=test_set,
)
samples = list(dataset)
for sample, expected_sample in zip_equal(samples, expected_samples):
self.assertEqual(sample, expected_sample)
@parameterized.expand(["train", "valid", "test"])
def test_iwslt2016_split_argument(self, split):
with tempfile.TemporaryDirectory() as root_dir:
language_pair = ("de", "en")
valid_set = "tst2013"
test_set = "tst2014"
_ = _get_mock_dataset(
os.path.join(root_dir, "datasets"), split, language_pair[0], language_pair[1], valid_set, test_set
)
dataset1 = IWSLT2016(
root=root_dir,
split=split,
language_pair=language_pair,
valid_set=valid_set,
test_set=test_set,
)
(dataset2,) = IWSLT2016(
root=root_dir,
split=(split,),
language_pair=language_pair,
valid_set=valid_set,
test_set=test_set,
)
for d1, d2 in zip_equal(dataset1, dataset2):
self.assertEqual(d1, d2)
|